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1 The proposed model of cellphone communication

1.1 Dynamical social network for pairwise communication

We consider a system consisting of N agents representing the mobile phone users. The
agents are interacting in a social network G representing social ties such as friendships,
collaborations or acquaintances. The network G is weighted with the weights indicating
the strength of the social ties between agents. To model the mechanism of cellphone
communication, the agents can call their neighbors in the social network G forming
groups of interacting agents of size two. Since at any given time a call can be initiated
or terminated the network is highly dynamical. We assign to each agent i = 1, 2, . . . , N a
coordination number ni to indicate his/her state. If ni = 1 the agent is non-interacting,
and if ni = 2 the agent is in a mobile phone connection with another agent. The
dynamical process of the model at each time step t can be described explicitly by the
following algorithm:

(1) An agent i is selected randomly at time t.

(2) The subsequent action of agent i depends on his/her current state (i.e. ni):

(i) If ni = 1, he/she will call one of his/her non-interacting neighbors j of G with
probability f1(ti, t) where ti denotes the last time at which agent i has changed
his/her state. Once he/she decides to call, agent j will be chosen randomly in
between the neighbors of i with probability proportional to f1(tj , t), therefore
the coordination numbers of agent i and j are updated according to the rule
ni → 2 and nj → 2.

(ii) If ni = 2, he/she will terminate his/her current connection with probability
f2(ti, t|wij) where wij is the weight of the link between i and the neighbor j
that is interacting with i. Once he/she decides to terminate the connection,
the coordination numbers are then updated according to the rule ni → 1 and
nj → 1.

(3) Time t is updated as t → t + 1/N (initially t = 0) and the process is iterated until
t = Tmax.
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1.2 General solution to the model

In order to solve the model analytically, we assume the quenched network G to be
annealed and uncorrelated. Therefore we assume that at each time the network is rewired
keeping the degree distribution p(k) and the weight distribution p(w) constant. Moreover
we solve the model in the continuous time limit.Therefore we always approximate the
sum over time-steps of size δt = 1/N by integrals over time. We use Nk

1 (t0, t)dt0 to
denote the number of agents with degree k that at time t are not interacting and have
not interacted with another agent since time t′ ∈ (t0, t0 + 1/N). Similarly we denote
by Nk,k′,w

2 (t0, t)dt0 the number of connected agents (with degree respectively k and k′

and weight of the link w) that at time t are interacting in phone call started at time
t′ ∈ (t0, t0+1/N). Consistently with the annealed approximation the probability that an
agent with degree k is called is proportional to its degree. Therefore the rate equations
of the model are given by

∂Nk
1 (t0, t)
∂t

= −Nk
1 (t0, t)f1(t0, t) − ckNk

1 (t0, t)f1(t0, t) + Nπk
21(t)δtt0

∂Nk,k′,w
2 (t0, t)

∂t
= −2Nk,k′,w

2 (t0, t)f2(t0, t|w) + Nπk,k′,w
12 (t)δtt0 (1)

where the constant c is given by

c =
∑

k′
∫ t
0 dt0Nk′

1 (t0, t)f1(t0, t)
∑

k′ k′
∫ t
0 dt0Nk′

1 (t0, t)f1(t0, t)
. (2)

In Eqs. (1) the rates πpq(t) indicate the average number of agents changing from state
p = 1, 2 to state q = 1, 2 at time t. These rates can be also expressed in a self-consistent
way as

πk
21(t) =

2
N

∑

k′,w

∫ t

0
dt0f2(t0, t|w)Nk,k′,w

2 (t0, t)

πk,k′,w
12 (t) =

P (w)
CN

∫ t

0
dt0

∫ t

0
dt′0N

k
1 (t0, t)Nk′

1 (t′0, t)f1(t0, t)f1(t′0, t)(k + k′) (3)

where the constant C is given by

C =
∑

k′

∫ t

0
dt0k

′Nk′
1 (t0, t)f1(t0, t). (4)

The solution to Eqs. (1) is given by

Nk
1 (t0, t) = Nπk

21(t0)e
−(1+ck)

R t
t0

f1(t0,t)dt

Nk,k′,w
2 (t0, t) = Nπk,k′,w

12 (t0)e
−2

R t
t0

f2(t0,t|w)dt (5)
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which must satisfy the self-consistent constraints Eqs. (3) and the conservation of the
number of agents with different degree

∫
dt0

[
Nk

1 (t0, t) +
∑

k′,w

Nk,k′,w
2 (t0, t)

]
= Np(k). (6)

In the following we will denote by P k
1 (t0, t) the probability distribution that an agent

with degree k is non-interacting for a period from t0 to t and by Pw
2 (t0, t) the probability

that a connection of weight w at time t is active since time t0. It is immediate to see that
these distributions are given by the number of individual in a state n = 1, 2 multiplied
by the probability of having a change of state, i.e.

P k
1 (t0, t) = (1 + ck)f1(t0, t)Nk

1 (t0, t)

Pw
2 (t0, t) = 2f2(t0, t|w)

∑

k,k′

Nk,k′,w
2 (t0, t). (7)

1.3 Stationary solution with specific f1(t0, t) and f2(t0, t)

In order to capture the behavior of the empirical data with a realistic model, we have
chosen

f1(t0, t) = f1(τ) =
b1

(1 + τ)β

f2(t0, t|w) = f2(τ |w) =
b2g(w)

(1 + τ)β
(8)

with parameters b1 > 0, b2 > 0, 0 ≤ β ≤ 1 and arbitrary positive function g(w). In Eqs.
(8), τ is the duration time elapsed since the agent has changed his/her state for the last
time (i.e. τ = t − t0 ). The functions of f1(τ) and f2(τ |w) are decreasing function of
their argument τ reflecting the reinforcement dynamics discussed in the main body of the
paper. The function g(w) is generally chosen as a decreasing function of w, indicating
that connected agents with a stronger weight of link interact typically for a longer time.
We are especially interested in the stationary state solution of the dynamics. In this
regime we have that for large times t % 1 the distribution of the number of agents is
only dependent on τ . Moreover the transition rates πpq(t) also converge to a constant
independent of t in the stationary state. Therefore the solution of the stationary state
will satisfy

Nk
1 (t0, t) = Nk

1 (τ)

Nk,k′,w
2 (t0, t) = Nk,k′,w

2 (τ)
πpq(t) = πpq. (9)

The necessary condition for the stationary solution to exist is that the summation of self-
consistent constraints given by Eq. (2) and Eq. (4) together with the conservation law
Eq. (6) converge under the stationary assumptions Eqs. (9). The convergence depends
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on the value of the parameters b0, b1, β and the choice of function g(w). In particular,
when 0 ≤ β < 1, the convergence is always satisfied. In the following subsections, we
will characterize further the stationary state solution of this model in different limiting
cases.

1.3.1 Case 0 < β < 1

The expression for the number of agent in a given state Nk
1 (τ) and Nk,k′,w

2 (τ) can be
obtained by substituting Eqs. (8) into the general solution Eqs. (5), using the stationary
conditions Eqs. (9). In this way we get the stationary solution given by

Nk
1 (τ) = Nπk

21e
b1(1+ck)

1−β [1−(1+τ)1−β ] = Nπk
21m

k
1(τ)

Nk,k′,w
2 (τ) = Nπk,k′,w

12 e
2b2g(w)

1−β [1−(1+τ)1−β ] = Nπk,k′,w
12 mw

2 (τ). (10)

To complete the solution is necessary to determine the constants πk
21 and πk,k′w

12 in a
self-consistent type of solution.To find the expression of πk,k′,w

12 as a function of πk
21 we

substitute Eqs. (10) in Eq.(3) and we get

πk,k′,w
12 (t) =

1
C
πk

21P (w)
[
k

∫ t

0
dt0m

k
1(t0, t)f1(t0, t)

∫ t

0
dt′0N

k′
1 (t′0, t)f1(t′0, t)

+ k′
∫ t

0
dt0m

k
1(t0, t)f1(t0, t)

∫ t

0
dt′0N

k′
1 (t′0, t)f1(t′0, t)

]
. (11)

Finally we get a closed equation for πk
21 by substituting Eq.(11) in Eq.(6) and using the

definition of c and C, given respectively by Eq. (2) and Eq. (4). Therefore we get

πk
21

[ ∫ ∞

0
mk

1(τ)dτ +
∫ wmax

wmin

P (w)
∫ ∞

0
mw

2 (τ)dτdw

×
(

ck

∫ ∞

0
mk

1(τ)f1(τ)dτ +
∫ ∞

0
mk

1(τ)f1(τ)dτ
)]

= p(k). (12)

Performing explicitly the last two integrals using the dynamical solution given by Eqs.
(10), this equation can be simplified as

πk
21 =

[ ∫ ∞

0
mk

1(τ)dτ +
∫ wmax

wmin

P (w)
∫ ∞

0
mw

2 (τ)dτdw

]−1

p(k). (13)

Finally the self-consistent solution of the dynamics is solved by expressing Eq. (2) by

c =
∑

k π
k
21(1 + ck)−1

∑
k π

k
21k(1 + ck)−1

. (14)

Therefore we can use Eqs. (13) and (14) to compute the numerical value of πk
21 and c.

Inserting in these equations the expressions for f1(τ), f2(τ |w) given by Eqs. (8) and the
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solutions Nk
1 (τ), Nk,k′,w

2 (τ) given by Eqs. (10) we get

P k
1 (τ) ∝ b1(1 + ck)

(1 + τ)β
e−

b1(1+ck)
1−β (1+τ)1−β

Pw
2 (τ) ∝ 2b2g(w)

(1 + τ)β
e−

2b2g(w)
1−β (1+τ)1−β

. (15)

The probability distributions P k
1 (τ) and Pw

2 (τ), can be manipulating performing a data
collapse of the distributions, i.e.

τ#
1 (k)P k

1

(
x1 =

τ

τ#
1 (k)

)
= A1x1

−βe−
x1

1−β

1−β

τ#
2 (w)Pw

2

(
x2 =

τ

τ#
2 (w)

)
= A2x2

−βe−
x2

1−β

1−β (16)

with τ#
1 (k) and τ#

2 (w) defined as

τ#
1 (k) =

[
b1(1 + ck)

]− 1
1−β

τ#
2 (w) =

[
2b2g(w)

]− 1
1−β (17)

where A1 and A2 are the normalization factors. The data collapse defined by Eqs. (16)
of the curves P k

1 (τ), Pw
2 (τ) and are both described by Weibull distributions.

1.4 Comparisons with quenched simulations

To check the validity of our annealed approximation versus quenched simulations, we
performed a computer simulation according to the dynamical process on a quenched
network. In Fig. 1 we compare the results of the simulation with the prediction of the
analytical solution. In particular in the reported simulation we have chosen β = 0.5,
b1 = 0.02, b2 = 0.05 and g(w) = w−1, the simulation is based on a number of agent N =
2000 and for a period of Tmax = 105, finally the data are averaged over 10 realizations
and the network is Poisson with average 〈k〉 = 6 and weight distribution p(w) ∝ w−2.
In Fig. 1, we show evidence that the Weibull distribution and the data collapse of
Pw

2 (τ) well capture the empirical behavior observed in the mobile phone data (Fig. ??).
The distribution of the non-interaction periods P k

1 (τ) in the model is by construction
unaffected by circadian rhythms but follow a similar data collapse as observed in the
real data (Fig. ??). The simulated data are also in good agreement with the analytical
prediction predicted in the annealed approximation for the parameter choosen in the
figure. As the network becomes more busy and many agents are in a telephone call, the
quenched simulation and the annealed prediction of P k

1 (τ) differs more significantly.

1.4.1 Case β = 0

For β = 0 the functions f1(τ) and f2(τ |w) given by Eqs.(8) reduce to constants, there-
fore the process of creation of an interaction is a Poisson process and no reinforcement
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Figure 1: Data collapse of the simulation of the proposed model for cell phone com-
munication. In the panel (A) we plot the probability Pw

2 (τ) that in the model a pair
of agents with strenght w are interacting for a period τ and in the panel (B) we plot
the probability P k

1 (τ) that in the model an agents of degree k is non-interacting for a
period τ The simulation data on a quenched networks are compared with the analytical
predictions (solid lines) in the annealed approximation. The collapses data of Pw

2 (τ) is
described by Weibull distribution in agreement with the empirical results found in the
mobile phone data.

dynamics is taking place in the network. Assigning β = 0 to Eqs. (5), we get the solution

Nk
1 (τ) = Nπk

21e
−b1(1+ck)τ

Nk,k′,w
2 (τ) = Nπk,k′,w

12 e−2b2g(w)τ . (18)

and consequently the distributions of duration of given states Eqs. (7) are given by

P k
1 (τ) ∝ e−b1(1+ck)τ

Pw
2 (τ) ∝ e−2b2g(w)τ . (19)

Therefore the probability distributions P k
1 (τ) and Pw

2 (τ) are exponentials as expected
in a Poisson process.

1.4.2 Case β = 1

In this section, we discuss the case for β = 1 such that fk
1 (τ) ∝ (1+ τ)−1 and fw

2 (τ |w) ∝
(1 + τ)−1. Using Eqs. (1) we get the solution

Nk
1 (τ) = Nπk

21(1 + τ)−b1(1+ck)

Nk,k′,w
2 (τ) = Nπk,k′,w

12 (1 + τ)−2b2g(w). (20)

and consequently the distributions of duration of given states Eqs. (7) are given by

P k
1 (τ) ∝ πk

21(1 + τ)−b1(1+ck)−1

Pw
2 (τ) ∝ πk,k′,w

12 (1 + τ)−2b2g(w)−1. (21)
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The probability distributions are power-laws.This result remains valid for every value of
the parameters b1, b2, g(w) (See Ref. [1] for a full account of the detailed solution of this
model) nevertheless the stationary condition is only valid for

b1(1 + ck) > 1
2b2g(w) > 1. (22)

Indeed this condition ensures that the self-consistent constraits Eqs. (2), (4) and the
conservation law Eq. (6) have a stationary solution.

1.5 Solution of the mean-field model on a fully connected network

Finally, we discuss the mean-field limit on the model in which every agent can interact
with every other agent. In this case, social network is a fully connected network. There-
fore we use N1(t0, t) and N2(t0, t) to denote the number of agents of the two different
states respectively and the rate equations are then revised to

∂N1(t0, t)
∂t

= −2N1(t0, t)f1(t0, t) + Nπ21(t)δtt0

∂N2(t0, t)
∂t

= −2N2(t0, t)f2(t0, t) + Nπ12(t)δtt0 (23)

Since we will refer to this model only in the framework of a null model, we will only
discuss the case in which the dynamics of the network is Poissonian, i.e. when

f1(t0, t) = b1

f2(t0, t) = b2. (24)

The stationary solution of this model is given by exponentials, i.e.

N1(τ) = Nπ21e
−2b1τ

N2(τ) = Nπ12e
−2b2τ . (25)

Finally the distributions of duration of given states expressed by Eqs. (7) are given by

P1(τ) ∝ e−2b1τ

P2(τ) ∝ e−2b2τ , (26)

which are exponential distributions as expected in a Poisson process.
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2 Entropy of the dynamical social networks

2.1 Entropy of the dynamical social networks of pairwise communication

The definition of the entropy of dynamical social networks of a pairwise communication
model, is given by Eq. (6) of the main body of the article that we repeat here for
convenience,

S = −
∑

i

P (gi(t) = 1|St) log P (gi(t) = 1|St)

−
∑

ij

aijP (gij(t) = 1|St) log P (gij(t) = 1|St) (27)

In this equation the matrix aij is the adjacency matrix of the social network and gij(t) = 1
indicates that at time t the agents i and j are interacting while gi(t) = 1 indicates that
agent i is non-interacting.Finally St = {gi(t′), gij(t′) ∀t′ < t} indicates the dynamical
evolution of the social network. In this section, we will evaluate the entropy of dynamical
social networks in the framework of the annealed model of pairwise communication
explained in detail in the previous section of this supplementary material. To evaluate
the entropy of dynamical social network explicitly, we have to carry out the summations
in Eq. (27). These sums, will in general depend on the particular history of the dynamical
social network, but in the framework of the model we study, in the large network limit
will be dominated by their average value. In the following therefore we perform these
sum in the large network limit. The first summation in Eq. (27) denotes the average
loglikelihood of finding at time t a non-interacting agent given a history St. We can
distinguish between two eventual situations occurring at time t: (i) the agent has been
non-interacting since a time t − τ , and at time t remains non-interacting; (ii) the agent
has been interacting with another agent since time t− τ , and at time t the conversation
is terminated by one of the two interacting agents. In order to characterize situation (i)
we indicate by P k

1→1(τ) the probability that a non-interacting agent with degree k in the
social network, that has not interacted since a time τ , doesn’t change state. Similarly,
in order to characterize situation (ii), we indicate by P k,k′,w

2→1 (τ) the probability that
a connected pair of agents (with degrees k and k′ respectively, and weight of the link
w) have interacted since time τ and terminate their conversation at time t. Given the
stationary solution of the pairwise communication model, performed in the annealed
approximation, the rates P k

1→1(τ) and P k,k′,w
2→1 (τ) are given by

P k
1→1(τ) = 1 − f1(τ)

N
− kf1(τ)

NC

∑

k′

∫
Nk′

1 (τ ′)f1(τ ′)dτ ′

= 1 − (1 + ck)
f1(τ)

N

P k,k′,w
2→1 (τ) =

2f2(τ |w)
N

(28)
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where the constant C is given by

C =
∑

k′

∫
k′Nk′

1 (τ ′)f1(τ ′)dτ ′ (29)

and f1(τ) and f2(τ |w) are given in Sec. 1.3. The variable Nk
1 (τ) indicates the number

of agents of connectivity k noninteracting since a time τ . This number can in general
fluctuate but in the large network limit it converges to its mean-field value given by Eq.
(10) The second term in the right hand side of Eq. (27), denotes the average loglikelihood
of finding two agents in a connected pair at time t given a history St. There are two
possible situations that might occur for two interacting agents at time t: (iii) these two
agents have been non-interacting, and to time t one of them decides to form a connection
with the other one; (iv) the two agents have been interacting with each other since a
time t − τ , and they remain interacting at time t. To describe the situation (iii), we
indicate by P k,k′

1→2(τ, τ
′) the probability that two non interacting agents, isolated since

time t− τ and t − τ ′ respectively, interact at time t. In order to describe situation (iv),
we denote by P k,k′,w

2→2 (τ) the probability that two interacting agents, in interaction since
a time t− τ , remain interacting at time t. In the framework of the stationary annealead
approximation of the dynamical network these probabilities are given by

P k,k′

1→2(τ, τ
′) =

f1(τ)f1(τ ′)
NC

(k + k′)

P k,k′,w
2→2 (τ) = 1 − 2f2(τ |w)

N
. (30)

Therefore, the entropy of dynamical social networks given by Eq. (27) can be evalu-
ated in the thermodynamic limit, and in the annealed approximation, according to the
expression

S = −
∑

k

∫ ∞

0
Nk

1 (τ)P k
1→1(τ) log P k

1→1(τ)dτ

−
∑

k,k′,w

∫ ∞

0
Nk,k′,w

2 (τ)P k,k′,w
2→1 (τ) log P k,k′,w

2→1 (τ)dτ

− 1
2

∑

k,k′

∫ ∞

0

∫ ∞

0
Nk

1 (τ)Nk′
1 (τ ′)P k,k′

1→2(τ, τ
′) log P k,k′

1→2(τ, τ
′)dτdτ ′

− 1
2

∑

k,k′,w

∫ ∞

0
Nk,k′,w

2 (τ)P k,k′,w
2→2 (τ) log P k,k′,w

2→2 (τ)dτ, (31)

with Nk
1 (τ) and Nk,k′,w

2 (τ) given in the large network limit by Eqs. (10).

2.2 Entropy of the null model

To understand the impact of the distribution of duration of the interactions and of the
distribution of non-interaction periods, we have compared the entropy S of the pairwise
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communication model with the entropy SR of a null model. Here we use the exponential
mean-field model described in Section 1.5 as our null model. In this model the agents are
embedded in a fully connected networks and the probability of changing the agent state
does not include the reinforcement dynamics. In fact we have that the transition rates
are independent of time (β = 0) and given by fR

1 (τ) = bR
1 and fR

2 (τ) = bR
2 . Following

the same steps used in Sec. 2.1 for evaluating S in the model of pairwise communication
on the networks, it can be easily proved that the entropy SR of the dynamical null model
is given by

SR = −
∫ ∞

0
NR

1 (τ)
[
1 − 2bR

1

N

]
log

[
1 − 2bR

1

N

]
dτ

−
∫ ∞

0
NR

2 (τ)
2bR

2

N
log

2bR
2

N
dτ

− 1
2

∫ ∞

0

∫ ∞

0
NR

1 (τ)NR
1 (τ ′)

2bR
1

NCR
log

2bR
1

NCR
dτdτ ′

− 1
2

∫ ∞

0
NR

2 (τ)
[
1 − 2bR

2

N

]
log

[
1 − 2bR

2

N

]
dτ (32)

where the constant CR is given by

CR =
∫ ∞

0
NR

1 (τ)dτ, (33)

and where N1, N2 are given , in the large network limit by their mean-field value given
by Eq.(25). In order to build an appropriate null model for the pairwise communication
model parametrized by (β, b1, b2) ,we take the parameters of the null model bR

1 and bR
2

such that the proportion of the total number of agents in the two states (interacting or
non-interacting) is the same in the pairwise model of social communication and in the
null model. In order to ensure this condition we need to satisfy the following relation

∑
k

∫ ∞
0 Nk

1 (τ)dτ
∑

k,k′,w

∫ ∞
0 Nk,k′,w

2 (τ)dτ
=

∫ ∞
0 NR

1 (τ)dτ∫ ∞
0 NR

2 (τ)dτ
. (34)

In particular we have chosen bR
1 = b1 and we have used Eq. (34) to determine bR

2 .
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3 Measurement of the entropy of a typical week-day of cell-phone com-
munication from the data

In this section we discuss the method of measuring the dynamical entropy from empirical
cellphone data as a function of time t in a typical weekday. This analysis gave rise to the
results presented in figure 2 in the main body of the paper. We have analyzed the call
sequence of subscribers of a major European mobile service provider. We considered calls
between users who at least once called each other during the examined 6 months period
in order to examine calls only reflecting trusted social interactions. The resulted event
list consists of 633.986.311 calls between 6.243.322 users. For the entropy calculation we
selected 562.337 users who executed at least one call per a day during a working week
period. Since the network is very large we have assumed that the dynamical entropy
can be evaluate in the mean-field approximation. We measured the following quantities
directly from the sample:

• N1(τ, t) the number of agents in the sample that at time t are not in a conversation
since time t − τ ;

• N calls(τ, t) the number of agents in the sample that are not in a conversation since
time t − τ and make a call at time t;

• N called(τ, t) the number of agents in the sample that are not in a conversation since
time t − τ and are called at time t;

• M in(τ, t) the number of agents that at time t are in a conversation of duration τ
with another agent in the sample;

• Mout(τ, t) the number of agents that at time t are in a conversation of duration τ
with another agent outside the sample;

• Mend(τ, t) the number of calls of duration τ that end at time t.

Using the above quantities, we estimated the probability pcalls(τ, t) that an agent makes
a call at time t after a non-interaction period of duration τ , the probability pcalled(τ, t)
that an agent is called at time t after a non-interaction period of duration τ and the
probability π(τ, t) that a call of duration τ ends at time t,according to the following
relations

pcalls(τ, t) =
N calls(τ, t)
N1(τ, t)

pcalled(τ, t) =
N called(τ, t)

N1(τ, t)

π(τ, t) =
M end(τ, t)

M in(τ, t)/2 + Mout(τ, t)
. (35)

Since the sample of 562.337 users we are considering is a subnetwork of the whole dataset
constituted by 6.243.322 users, in our measurement, an agent can be in one of three
possible states

11



• state 1: the agent is non-interacting;

• state 2: the agent is in a conversation with another agent of the sample;

• state 3: the agent is in a conversation with an agent outside the sample.

Therefore , to evaluate the entropy of the data, we can modify Eq.(27) into

S(t) = −
∑

i

P (gi(t) = 1|St) log P (gi(t) = 1|St)

−
∑

ij

aijP (gij(t) = 1|St) log P (gij(t) = 1|St)

−
∑

i

P (g′i(t) = 1|St) log P (g′i(t) = 1|St) (36)

where aij is the adjacency matrix of the quenched social network, gi(t) = 1 indi-
cates that the agent i is in state 1, gij(t) = 1 indicates that the agent is in state
2 interacting with agent j and g′i(t) = 1 indicates the agent i is in state 3. Finally
St = {gi(t′), gij(t′) g′i(t) ∀t′ < t} indicates the dynamical evolution of the social net-
work. To explicitly evaluate Eq. (36) in the large network limit where we assume that
the dependence on the particular history are vanishing, we sum over the loglikelihood of
all transitions between different states using the same strategy in Sec.2, which is

S(t) = −
∑

τ

N1(τ, t)P1→1(τ, t) log P1→1(τ, t)

−
∑

τ

M in(τ, t)P2→1(τ, t) log P2→1(τ, t)

−
∑

τ

Mout(τ, t)P3→1(τ, t) log P3→1(τ, t)

− 1
2

∑

τ,τ ′

N1(τ, t)N1(τ ′, t)P1→2(τ, τ ′, t) log P1→2(τ, τ ′, t)

− 1
2

∑

τ

M in(τ, t)P2→2(τ, t) log P2→2(τ, t)

−
∑

τ

N1(τ, t)P1→3(τ, t) log P1→3(τ, t)

−
∑

τ

Mout(τ, t)P3→3(τ, t) log P3→3(τ, t). (37)
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where the probabilities of transitions between different states are given by

P1→1(τ, t) = 1 − pcalls(τ, t) − pcalled(τ, t)
P2→1(τ, t) = P3→1(τ, t) = π(τ, t)

P1→2(τ, τ ′, t) =
(1 − γ)

C

[
pcalls(τ, t)pcalled(τ ′, t) + pcalls(τ ′, t)pcalled(τ, t)

]

P2→2(τ, t) = P3→3(τ, t) = 1 − π(τ, t)

P1→3(τ, t) = γ

[
pcalls(τ, t) + pcalled(τ, t)

]
(38)

and where C is given by
C =

∑

τ

N1(τ, t)pcalled(τ, t). (39)

Finally in 38 we have introduced a parameter γ ∈ [0, 1] to denote the portion of the calls
occurring between an agent in the sample and an agent out of the sample. For simplicity,
we assume that γ is a constant. Substituting Eq.(38) into Eq.(37), we have performed
the summation over τ to obtain the value of entropy as a function of t presented in
Figure 2 of the main body of the paper where we have taken γ = 0.8, consistently with
the data.
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