Text S3: Secretion Systems
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Symbiotic microorganisms can influence host physiology and gene expression using proteins that are surface localized or secreted, either into the extracellular milieu or directly into host cells. Since Xenorhabdus spp. interact with two distinct animal hosts, and appear not to have a free-living life cycle stage, we examined their secretion potential (Table 1, below). Bacterial secretion systems are categorized as 6 types. Type II and V secretion systems utilize N-terminal signal sequences that direct proteins across the cytoplasmic membrane through the Sec secretion system. Signal sequence predictions (0.85 probability greater than 15 aa) for proteins that would utilize the Sec system to cross the membrane reveal 381 proteins in X. bovienii and 373 proteins in X. nematophila. Of those proteins that are unique to X. bovienii or X. nematophila (relative to each other, Y. pestis, P. luminescens, and E. coli) there are 44 and 42 proteins, respectively. The latter includes NilB and NilC, which are known to be X. nematophila outer membrane specificity determinants required for colonization of S. carpocapsae nematodes.
Type III and IV secretion systems, which transport proteins directly from the bacterium into the host cell, are utilized by both pathogens and mutualists to communicate with and manipulate hosts 


[1,2] ADDIN EN.CITE , but are lacking in Xenorhabdus spp. P. luminescens encodes a type III secretion system (T3SS), and the YopT effector was shown to play a role in its anti-phagocytic ability in insects 


[3] ADDIN EN.CITE .  The Yersinia genus includes three species that are pathogenic to humans and other mammals: Y. pseudotuberculosis and Y. enterocolitica, which cause gastroenteritis, and Y. pestis, the agent of bubonic and pneumonic plague. Each of these three contains a virulence plasmid encoding both Yop proteins that disrupt host immune functions and a T3SS that translocates the Yops directly into the cytoplasm of host cells. Furthermore, the T3SS system of Y. pestis is responsible for secretion of its insecticidal-toxin-like proteins 


[4] ADDIN EN.CITE , similar to members of the Tc toxin family discovered in Photorhabdus and Xenorhabdus [5]. Given the important role of the T3SS in governing insect pathogenic functions in these bacteria, it is surprising that neither Xenorhabdus spp. appears to encode this system 


[3] ADDIN EN.CITE . Also, there are no Yops encoded in the Xenorhabdus sp. genomes, consistent with the fact that these bacteria are not pathogens of mammals.
 The flagellar secretion system, which is evolutionarily related to the T3SS [6] may be responsible for secretion of virulence determinants. Indeed, XlpA lipase is secreted through the flagellar export apparatus 


[7] ADDIN EN.CITE . Further, X. nematophila motility mutants lacking flagellar secretion components display a virulence defect, while a mutant lacking only the flagellin subunit does not 


[7] ADDIN EN.CITE . 
X. nematophila lacks Type V secretory adhesin genes, whereas X. bovienii contains 2, relative to 11 found in Y. pestis. Finally, Xenorhabdus contains significantly fewer ABC transport proteins relative to other enteric bacteria.  X. nematophila and X. bovienii encode 18 and 20 ABC-transporters, or efflux pumps, and 5 and 6 biosynthesis gene clusters include such genes, respectively.  For comparison, E. coli harbours about 80 ABC transporters [8]). 
Type VI secretion systems (T6SS) were only recently classified as such, and are known to play a role in virulence in several pathogens including V. cholerae, L. pneumophila, and P. aeruginosa (reviewed in [9]) and negatively influence mutualistic nodulation of pea by R. leguminosarum [10]. Both Xenorhabdus spp. encode two T6SS secretion loci, one of Class A and the other of Class D [9], as well as homologs of the T6SS secreted putative effectors Hcp and VgrG. However, deletion of one (Class D) of the two X. nematophila T6SS system loci did not influence virulence toward M. sexta insects or colonization of S. carpocapsae nematodes (K. Cowles and H. Goodrich-Blair, unpublished). This may indicate that the two T6SS systems are functionally redundant, or that the Class D T6SS system is necessary for interaction with a different insect host. 
Both P. luminescens and P. asymbiotica encode the class D T6SS, while P. asymbiotica encodes all but one factor in the Class A T6SS system and P. luminescens encodes only 8 of the 17 genes present in the Class A system of the other three species (Table 2, below). In P. luminescens class A remnants are generally located near each other on the chromosome, perhaps suggesting that both islands were present in an ancestor and gradually lost in P. luminescens.
Secretion of surface components may also contribute to host interaction phenotypes of Xenorhabdus spp. Both Xenorhabdus genomes encode homologs of the Y. pestis polysaccharide biosynthetic operon hmsHFRS 


[11,12] ADDIN EN.CITE . Y. pestis colonizes fleas and uses them as a vector. Y. pestis makes a biofilm in the digestive tract of its vector, the flea; by colonizing the insect in this mode, it is able to resist voiding by peristalsis and defecation [13]. hmsHFRS is required for the in vivo biofilm 


[11,12] ADDIN EN.CITE . Furthermore, Y. pestis and Y. pseudotuberculosis both make an hmsHFRS-dependent biofilm that persists tenaciously on the exterior surface of the model nematode C. elegans 


[14,15] ADDIN EN.CITE .

The X. nematophila hmsHFRS operon identities to Y. pestis proteins are: HmsH, 46%; HmsF, 65%; HmsR, 67%; and HmsS, 41%). Like Yersinia sp., X. nematophila can make biofilms on the head of C. elegans [16,17]. Because of this interaction with another nematode, we hypothesized that the X. nematophila biofilm is involved in symbiotic colonization of its S. carpocapsae host. However, deletion of hmsR and hmsS produced no defect in either initial colonization or persistence in IJs. These mutants, introduced as either free bacteria injected into insect hemocoel or as symbionts of IJs, were also not attenuated for pathogenicity against G. mellonella nor M. sexta larvae [17].

It is unusual to have pathogenic bacteria lacking in major virulence secretion systems such as Tat (of which parts exist in X. nematophila and X. bovienii)[18], and the Type II and III secretion systems 


[19,20] ADDIN EN.CITE . It is possible that, in addition to the flagellar export apparatus, the Type Vb system present in these bacteria is playing a role in exporting extracellular virulence-related proteins [21].
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Table 1. Secretion systems in X. nematophila and X. bovienii
	
	X. nematophila
	X. bovienii
	P. luminescens
	P. asymbiotica

	Type I
	2 of 3 componentse
	1 of 3 componentsb
	Yes
	1 of 3 componentsb

	Type II
	No
	No
	No
	No

	Type III
	No
	No
	Yes
	Yes

	Type IV
	No
	No
	No
	No

	Type Va
	No
	No
	No
	No

	Type Vb
	Yes
	Yes
	Yes
	Yes

	Type Vc
	No
	No
	No
	No

	Type VI
	Yesc
	Yesc,d
	Yesc
	Yesc

	Sec-SRP
	Yes
	Yes
	Yes
	Yes

	TAT
	4 of 5 componentse
	4 of 5 componentse
	4 of 5 componentse
	4 of 5 componentse


a missing the ABC transporter HlyB
b only has the OMP TolC
c missing regulatory proteins
d missing VgrG (manual searches and Table 2 reveal that all four species have multiple VgrG-like proteins) 

e missing TatE
Table 2. Distribution of Class A Type VI Secretion System Genes in Xenorhabdus and Photorhabdus
	Locus Tag b
	Predicted protein product
	X. nematophilab
	X. bovienii
	P. asymbiotica
	P. luminescens

	XNC1_2515
	Vgr family protein
	4
	9
	17
	14

	XNC1_2516
	Pentapeptide repeat protein
	2
	2
	3
	0

	XNC1_2517
	Pentapeptide repeat protein
	2
	2
	3
	0

	XNC1_2518
	conserved hypothetical protein
	1
	1
	1
	0

	XNC1_2519
	conserved hypothetical protein
	1
	1
	1
	0

	XNC1_2520
	putative lipoprotein of SST VI cluster
	1
	1
	0
	0

	XNC1_2521
	probable component of SST VI cluster
	2
	2
	5
	4

	XNC1_2222
	Conserved hypothetical protein with OmpA/MotB domains
	2
	2
	5
	4

	XNC1_2523
	IcmF-like domain protein of SST VI cluster
	2
	2
	5
	7

	XNC1_2524
	probable component of SST VI cluster
	1
	1
	1
	0

	XNC1_2525
	probable component of SST VI cluster
	2
	2
	5
	3

	XNC1_2526
	probable component of SST VI cluster
	3
	2
	5
	4

	XNC1_2527
	putative Type VI secretion system effector (Hcp1 family)
	1
	1
	1
	0

	XNC1_2528
	probable component of SST VI cluster
	1
	1
	1
	0

	XNC1_2529
	probable component of SST VI cluster
	1
	1
	1
	0

	XNC1_2530
	probable component of SST VI cluster)
	4
	6
	7
	5

	XNC1_2531
	conserved hypothetical protein (probable component of SST VI cluster
	2
	2
	4
	2

	XNC1_2532
	putative ClpA/B-type chaperone (Putative ATPase with chaperone activity)
	3
	4
	6
	5


a Locus tag IDs are according to the X. nematophila genome annotation

b Number of hits retrieved when X. nematophila ORF used in BlastP analysis of whole genome with cutoff score of 1e-5.
