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Derivation of the transition matrix of the lumped Markov chain

We use the notation introduced in the main text. First note that the entry (i, j) of Λ = diag(π)P , namely

[Λ]ij = πipij , is the joint probability that the random walker is in i at time t and in j at time (t + 1).

Then, the collecting matrix H aggregates such probabilities within each community, that is, the entry

(c, d) of Γ = H ′diag(π)PH, namely

[Γ]cd =
∑
i∈Cc

∑
j∈Cd

πipij , (1)

is the joint probability of being in any node of Cc at time t and in any node of Cd at time (t+ 1). The

required meta-network transition probabilities ucd are finally obtained by dividing each row c of Γ by the

stationary probability of being in Cc, namely by θc =
∑

i∈Cc
πi. This is performed by left-multiplying Γ

by [diag (πH)]
−1

, since πH = (θ1θ2 . . . θq).

It is now straightforward to prove that the original Markov chain πt+1 = πtP and the lumped

one Πt+1 = ΠtU have the same stationary distribution (provided the latter is suitably collected),

namely π = πP implies that Π = πH satisfies Π = ΠU . For that, we have to evaluate ΠU =

πHU = πH [diag (πH)]
−1

H ′diag(π)PH. But Ψ = πH [diag (πH)]
−1

= (11 . . . 1) (a 1 × q vector), and

Ω = H ′diag(π) is a q×N matrix whose only nonzero entry of column i is πi, which is located in row c if

i ∈ Cc. Thus ΨΩ = π, and hence ΠU = πHU = πPH = πH = Π.

Normalized Mutual Information

Consider a network with N nodes and two partitions P′
R = {C1,C2, . . . ,CR} and P′′

S = {C1,C2, . . . ,CS},

with R and S communities, respectively. Denote by nij the number of nodes classified in Ci by partition

P′
R and in Cj by partition P′′

S , and define also ni =
∑

j nij and nj =
∑

i nij . Then the normalized mutual
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Figure S1.1. The persistence probabilities’ diagram of the Erdős-Rényi network.

information between P′
R and P′′

S is defined as

I =
−2

∑R
i=1

∑S
j=1 nij log

(
nijN
ninj

)
∑R

i=1 ni log
(
ni

N

)
+
∑S

j=1 nj log
(nj

N

) . (2)

A discussion on the interpretation of I and on its main properties can be found in [1] (see also [2]).

Applications and Examples

We enlarge the scope of the results presented in the main text by illustrating a few more examples of

application.

Erdős-Rényi network

By construction, Erdős-Rényi (ER) networks should not display communities, as they are built by ran-

domly, homogeneously distributing edges among nodes (although exceptions can arise due to stochas-

ticity [3]). We build a ER network with N = 1000 and ⟨k⟩ = 10. The analysis confirms the lack of a

clusterized structure: at the optimal time horizon T = 4 the cophenetic correlation coefficient C is as

small as 0.437, and the persistence probabilities’ diagram of Fig. S1.1 shows the absence of α-partitions

with reasonably large α. Also, rather significant communities exist only for trivial (i.e., very small) q.
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Figure S1.2. Zachary’s karate club network. Above: The dendrogram obtained with T = 2. Below:
The persistence probabilities’ diagram.

Zachary’s karate club

Zachary’s karate club [4] is a 34-node network which has become a standard benchmark in community

detection [2], despite its very small dimension. By applying our method, we obtain at T = 2 (for which

C is maximal) the dendrogram and the persistence probabilities’ diagram of Fig. S1.2. As usual, the

quality of the partitions deteriorates as q increases: setting the standard value α = 0.5 yields P4 as the

optimal solution of the community detection problem (problem (5) in the main text): incidentally, this

is also the max-modularity partition. More restrictive α values lead instead to q = 2 or 3.

It is interesting to note that the ”historical” 2-way partition, as reported by Zachary [4], has diag(U) =

(0.875, 0.868), and that we found the largest minucc = 0.872 with the 2-way partition obtained by Weinan

et al. [5]. We exactly recover the same P2 partition with our partitions generator if we let the time horizon

T = 1 instead of 2. This suggests that the performance of our algorithm can in principle be improved if

one performs a fine tuning of T . This can easily be done for small-size networks, but can be problematic

for large ones.
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LFR benchmark

LFR benchmark networks [6] have already been introduced in the main text. Since they are nowadays

the most important and structured set of benchmarks for community detection algorithms, we test our

method on some other sample network. More specifically, we move to directed, weighted networks, which

can be generated by an extension of the basic LFR procedure, as described in [7].

Figure S1.3 displays the results obtained with two networks. Their parameters (we refer to [7] for their

detailed definition) are N = 1000, ⟨k⟩ = 25, τ1 = −2 and τ2 = −1 (exponents of the power-law degree and

community size distributions, respectively), β = 1.5 (coefficient of the degree-weight relationship). The

two networks differentiate for the topology and weight mixing parameters, which are set to µt = µw = 0.3

and µt = µw = 0.6, respectively. The results are qualitatively similar to the undirected, unweighed case

(see the main text): in both instances the correct number of planted communities is perfectly identified

by a sharp decrease in the minimal ucc. By the way, the 35 communities are perfectly identified in the first

case (with a normalized mutual information I = 1) and almost perfectly in the second one (I = 0.9996).

Furthermore, the different quality of the communities in the second case, due to the larger mixing, is

revealed by the smaller ucc values.

LinkRank benchmark

Kim, Son, and Jeong [8] proposed a variation to the standard modularity, in order to improve the ability

of the method in the specific case of directed networks. Their proposal is based on the introduction of

a quantity called LinkRank, which is a measure of the importance of an edge (see the main text for

a thorough discussion). They demonstrate the superiority of their approach on the benchmark graph

of Fig. S1.4, which is composed of 8 rings of 8 nodes each (thus N = 64). Rings are intended to

form communities, as a walker can circulate indefinitely within each of them. Furthermore, each ring

is connected to another ring only by a single edge, forming a giant loop. Whereas the weights of the

intra-ring edges are all set to w = 1, a large weight of the inter-ring edges (approximately above w = 4)

can confound community detection algorithms [8]. We set w = 5 for the inter-ring edges, to test whether

our approach is able to cope with this problem.

The results of the analysis are in Fig. S1.5. The correct community structure is perfectly identified,

as it can be checked by inspecting the partition with q = 8. Actually, taking q = 8 gives rise to a 8 × 8
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Figure S1.3. The persistence probabilities’ diagrams of two LFR directed, weighted benchmark
networks. Top: µt = µw = 0.3 (the number of planted communities is 35). Bottom: µt = µw = 0.6 (42
planted communities). See the text for the other parameters.

Figure S1.4. LinkRank benchmark network.
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Figure S1.5. The persistence probabilities’ diagram of the LinkRank benchmark network.

cyclic matrix U with all persistence probabilities equal to ucc = 0.8485 (i.e., the probability of continuing

to circulate in the same ring) and a unique non-zero off-diagonal entry 1 − ucc in each row (i.e., the

probability of jumping to the next ring).

Neural network

The last example concerns a directed, weighted network, representing the neural connections of the worm

Caenorhabditis elegans. Starting from Watts and Strogatz’s seminal work [9], different versions of this

graph have become a standard benchmark for network analysis. We consider the directed, weighted

version, whose largest connected component has N = 239 nodes.

Similarly to the case of the world trade network (see the main text), we show that our method is able

to isolate well-defined communities even in a network which overall does not possess a definite clusterized

structure. Consider the persistence probabilities’ diagram of Fig. S1.6. With the exception of the trivial

cases q = 2 and 3, no α-partition exists with α reasonably large. Nonetheless, a few α-communities with

α ≥ 0.8 appear and are stably detected in a rather wide range of q. More precisely, the same set of five

communities with ucc ≥ 0.826 are revealed in the range 14 ≤ q ≤ 20. They are clusters, of dimension

ranging from 18 to 29 nodes, with comparatively rather strong internal connectivity. Any other candidate

cluster, instead, turns out to have a much smaller ucc value and, therefore, it cannot be considered to be

a meaningful community.
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Figure S1.6. The persistence probabilities’ diagram of the neural network.

Absolute and relative persistence probabilities

Several community detection methods (including max-modularity, as discussed in the main text) are

based on a comparison between some quantity related to the network under scrutiny, and the same

quantity computed on a randomized network (null model). Communities are thus significant if their

structure markedly differ from the null model, which raises important questions on how to define a

proper randomization (see, e.g., [2] for a discussion). Whereas the definition of ucc does not contain such

a sort of comparison, we can move in this line by complementing the “absolute” persistence probability

ucc with a relative persistence probability rcc = ucc − Eucc. Here Eucc is the value of the persistence

probability of the same cluster Cc in a null model where the weight wij is replaced by its expected

value, i.e., Ewij = sisj/(2S) for undirected networks, and Ewij = souti sinj /S for directed ones (we

are adopting the same null model of modularity). By replacing these quantities in the expression of

persistence probability (see main text), after some computation we obtain Eucc = Sc/(2S) for undirected

networks, and Eucc = Sin
c /S for directed ones, where Sin

c is the sum of the in-strengths of the nodes of

Cc.

Plotting the rcc-s gives a picture of the relative quality of each community/partition with respect to

the null model. In Fig. S1.7, for example, the absolute and relative persistence probabilities are shown

for the same network, namely a LFR benchmark having 38 built-in communities. Notice that, as it is

typical, minc ucc is non-increasing with respect to q in all persistence probabilities’ diagrams. On the

contrary, the typical pattern we obtain when plotting the rcc-s as functions of q shows an initial increase

of min rcc, followed by a decrease. For small q, when clusters are very wide, even if the ucc-s are large

some of the Eucc-s are large too, yielding a small rcc. On the other side, for large q some of the ucc-s
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Figure S1.7. Absolute and relative persistence probabilities’ diagrams of a LFR benchmark network.
The relative persistence probability rcc = ucc −Eucc compares the absolute one ucc with the persistence
probability Eucc of the same cluster in a null model.

rapidly drop, and so do the rcc-s. A guideline, therefore, could be that of taking q such that minc rcc

is maximized, as it yields the maximal differentiation of the clusters from the null model. This is an

option, of course, although we point out that, for example, in the case portrayed in Fig. S1.7 such a

maximum has scarce sensitivity, as it has almost the same value in 18 ≤ q ≤ 38. Actually the maximum

is attained for 33 ≤ q ≤ 37, whereas the number of built-in communities is 38. But, apart from this, we

think that the information conveyed by the absolute persistence probabilities ucc is more representative:

large clusters have naturally large ucc values, whereas their rcc is penalized just because their structure

tends to be similar to that of the entire network (for which ucc = Eucc = 1 and thus rcc = 0). In other

words, ucc assigns a “quality value” to the cluster c, regardless to its size (even if so large to be scarcely

meaningful), and leaves the network analyst the duty of selecting the desired trade-off between clusters’

significance and size. In this respect, relative persistence probabilities do not seem to add value to the

analysis, not counting that they are based on a specific choice of the null model (see [2] for a discussion

on the criticalities in the definition of the null model).
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