Appendix S1: hierarchical linear model to quantify fMRI neuronal adaptation
First level (within subject) analysis
For the fMRI time series from the phase-encoded and standard/random block designs, we can use the first cycle (block) of the response for comparison with the later/last cycles (blocks) of the response, to address the adaptation effect. In this study, for the reason of simplicity, we compare the first cycle with the last cycle to estimate the adaptation effect in the phase-encoded experiments. For the first and last cycles of each run, we can apply the general linear model (GLM) to quantify the response. Considering a design matrix including hemodynamic model 
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 and linear drifts in the model, we have [1]:
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is the linear slope drift, 
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 is the fMRI image frame, 
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is the fMRI response; 
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 are the associated coefficients of interception and slope drift, respectively.   
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 is the hemodynamic response model which can be estimated by the Fourier fundamental frequency of the fMRI response in the phase-encoded design. For block design experiment, 
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can be approximated by a block function convolved with a Gaussian function [2].

Suppose the error term 
[image: image11.wmf]i

e

 is autocorrelated [1,3], i.e. 
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where 
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is the number of fMRI image frames within each cycle for adaption comparison. The least squares estimation of 
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The vector of the residuals 
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where 
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 is the contrast matrix 
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 for one input fMRI activation detection experiment, and 1 corresponds to the hemodynamic model (or brain system input) 
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Second level (between runs) analysis

For the second level analysis, the general linear mixed model (GLMM) [4,5,6] was adopted, i.e.:
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. We will use the restricted maximum likelihood [7,8] (REML) algorithm to estimate 
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In the adaptation analysis, since we want to compare the first cycle/block effect with the later/last cycle/block effect in the fMRI response, we define a design matrix 
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is the number of the first and last cycle respectively. To estimate covariance components, the expectation maximization (EM) algorithm [8,9] and its modified version [1] is used and given as follows: 
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In the numerical implementation of the algorithm, we subtract min(
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) from S, and add it back after we have estimated the values. In this way, the error in the numerical analysis can be reduced. To estimate the random effect, we define the weighted residual matrix:
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where Z=
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where 
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 in (8) and iterate (8-10) to convergence. In this work, 10 iterations appear to be enough [1].  In addition, because of numerical noise, we smooth the random effect as follows:
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where 
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We use the Gaussian function with full width at half maximum (FWHM) = 10 mm within this study for the smoothing operation in equation (12).  Then, replacing
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Its estimated variance matrix is:
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In cases where the variances of 
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are not homogeneous across the second level analysis( i.e., the same physician did not collect the data), the above equation should be replaced by [6,10]:
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Finally, the effect defined by a contrast matrix b in 
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 can be estimated by 
[image: image125.wmf]*

E

= b
[image: image126.wmf]^

g

 with standard deviation:

                                                                
[image: image127.wmf]*

S

=
[image: image128.wmf]'

^

^

)

(

b

Var

b

g

                                                            (16)

and the T statistic is:
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with a nominal 
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Third level (between subjects) analysis

Besides comparing the different effects, if we are interested in the combination of different runs/subjects, we can set the contrast matrix to be: b = 1 and the new design matrix as:
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where 
[image: image133.wmf]s
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is the total number of subjects. Then we perform the calculation from equation (8) to equation (10). If we are interested in different group comparison, we can set the design matrix as in equation (7) and set the corresponding contrast matrix as b = [1 -1]. For the group comparison, e.g. control subjects compared with amblyopic subjects in this study, the design matrix can be set as:
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where 
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is the total number of normal and amblyopic subjects respectively. The contrast matrix can be set to b = [1 1 -1 -1] for comparing control subjects with amblyopic subjects accordingly.
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