Supplemental Methods: ARFIMA models

Traditionally, motor learning has been modeled using state-space models, which describe learning as the updating of a state vector containing a discrete set of information regarding prior performance and current stimulus information.  All state-space models have corresponding Autoregressive Moving-Average (ARMA) models [1]; that is, there exists some simple linear transformation to express a state-space model as an ARMA model [2].  This transformation is non-unique, such that a single ARMA model may be rewritten as a number of different state-space models.  Nevertheless, the dynamics and statistics of these models are identical; both the state-space model and its ARMA counterpart will exhibit the same (exponential) decay of inter-trial correlations as expressed in the ACF and power spectrum.  


An ARMA(p,q) model assumes that a time series may be described by two independent processes acting upon a white noise process.  There is a pth order autoregressive (AR) process that uses the previous p observations Xt-p,…,Xt-1 and the current noise term et to generate the next point in the time series Xt, added to a qth order moving-average (MA) process that uses the last q noise terms et-q,…,et-1  to generate the next observation.  This yields an ARMA(p,q) process of the form:
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(Eqn. 1)

where the 
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are constant coefficients.  An ARMA process only models short-term correlations in a time series, limited by the extent over which prior observations and noise terms are explicitly incorporated.  To exhibit inter-trial correlations that decay more slowly than an exponential rate, it is necessary to turn to a different class of models.


The ARFIMA(p,d,q) model is a combination of the standard ARMA(p,q) model [1], which describes a process exhibiting short-term correlations, and a fractional differencing parameter, d, which gives the model its long-range dependence.  Eqn. 1 can be re-written using the backward shift operator B, defined as BXt = Xt-1, as a polynomial in B with coefficients 
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(Eqn. 2)

where powers of B indicate a corresponding number of shifts backward in the time series.  Note that using B, we can express the differencing of successive terms in the time series as (1-B)Xt; raising (1-B) to the dth power is equivalent to repeatedly differencing the time series d times.  If d is a fraction in the range 0 < 
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 ≤ 0.5, we then have the fractional differencing operator defined using the binomial expansion by:
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(Eqn. 3)

where Γ is the gamma function [3-4].  Thus, we can express an ARFIMA model as:
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(Eqn. 4)

The fractional integration gives the model its long-range dependence [5]; thus, an ARFIMA model exhibits the expected power-law type decay of the autocorrelation function that marks it as having long-term correlations.  ARFIMA models with d values greater than zero are persistent – small values tend to be followed by small values and large values tend to be followed by large values – while d values less than zero produce anti-persistent processes that tend to fluctuate highly.  This model provides a neat and compact form for expressing the complexities of a process exhibiting long-range dependence.  Since fractional integration requires keeping track of all data points in a time series to an infinite time in the past, however, the computations for simulating or modeling an ARFIMA process can be quite unwieldy.  
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