Preparation of templates for Illumina sequencing

Restriction digest

Digest 1μg of tumor DNA with NIaIII (IRR) or Alul (IRL). Do not use more than 2 μg of genomic DNA as this
will lead to concatomerization of genomic fragments during the ligation step. Less than 1 μg of genomic
DNA can be used, but the final volume should be scaled to maintain a similar DNA concentration in the
reaction.

```
1 μL enzyme
4 μL buffer
4 μL 10X BSA (if needed)
<u>X</u> μL H<sub>2</sub>O
<u>Y</u> μL DNA
20 μL Total
```

- 2. Incubate at least 3 hours at 37°C.
- 3. Heat inactivate enzyme.

The restriction digest can be incubated overnight. In this case, heat inactivation of the enzyme is not required. However, overnight incubation should be performed in a 37°C incubator (not a water bath) to prevent evaporation of the sample.

Ligation

- 1. Prepare the adaptor by mixing the linker+ and linker- primers (each at 100μM) at a 1:1 ratio (see below for primer details). Linkers should be re-suspended at 100μM when stored. Heat the primer solution at 95°C for 5 minutes. Turn off the heat and allow the primers to slowly cool to room temperature. This allows the single-stranded oligos to anneal and form the double-stranded adaptor.
- 2. Set up ligations:

```
10.0 μL digested genomic DNA

2.0 μL 10X NEB buffer 4

2.0 μL 10 mM ATP

1.5 μL adaptor

1.0 μL T4 ligase (2,000U)

3.5 μL dH<sub>2</sub>O

20.0 μL Total
```

ligate 2-3 hours at room temperature or overnight at 16°C

- 3. Heat inactivate the T4 ligase (65°C for 10 minutes).
- 4. Digest ligation with *BamHI*. This prevents the fragment from transposons within the concatomer from being amplified. *BamHI* solution is made in a 10μL volume per tube. To each tube add:

```
1.0 μL BamHI
1.0 μL NEB Buffer 4
3.0 μL 10X BSA
5.0 μL dH<sub>2</sub>O
10.0 μL Total
```

If the digest ligation is performed overnight at 37°C then column purification is not required as the *Bam*HI has degraded. Otherwise, a column purification is needed to remove the *Bam*HI enzyme.

v5.0 June 2011

PCR

2.00 µL	ligation reaction	Step 1	98°C	30 seconds
10.00 µL	5X buffer	-		
1.00 µL	10 mM dNTPs	Step 2	98°C	10 seconds
1.50 µL	primer 1 (10 μM)	-	63°C	20 seconds
1.50 µL	primer 2 (10 µM)		72°C	30 seconds
0.25 µL	Phusion polymerase (NEB)		repeat Step 2 for 25 cycles	
33.75 µL	<u>H2O</u>		-	•
50.00 μL	Total	Step 3	72°C	2 minutes
•		-	Hold at 4	4°C

- dilute 3 μL of PCR reaction in 147 μL H₂O (1:50 dilution)
- store remaining primary PCR reaction at 4°C

Set up secondary PCR

4.00 μL	diluted primary PCR (diluted 1:50 in H ₂ O)
20.00 μL	5X buffer
2.00 µL	10 mM dNTPs
3.00 µL	nested primer 1 (10 μM)
3.00 µL	nested primer 2 (10 µM)
1.00 µL	Phusion polymerase (NEB)
67.00 µL	H2O
100.00 µL	Total

- perform PCR using the same cycle conditions as primary PCR (25 cycles)
- Analyze 25 µL of PCR product on 1.5% agarose gel.
- Purify remaining PCR product to remove excess primers/dNTPs.
- Determine concentration of purified PCR products (Nanodrop or UV spec is sufficient)
- Pipet 25 ng of each PCR product pool into a single tube to be run on a single lane on the Illumina platform
- Adjust the final concentration of the mixed sample to be ~20-25 ng/μL.
- Incubate the diluted products at 37-42°C for 30 minutes
- Submit sample for sequencing

v5.0 June 2011

Primers to generate adaptors:

IRDRR adaptor

NIaIII linker+ 5'-GTAATACGACTCACTATAGGGCTCCGCTTAAGGGACCATG-3'

NIaIII linker- 5'-Phos-GTCCCTTAAGCGGAG-C3spacer-3'

IRDRL adaptor

Alul linker+ 5'-GTAATACGACTCACTATAGGGCTCCGCTTAAGGGAC-3'

Alul linker- 5'-Phos-GTCCCTTAAGCGGAG-C3spacer-3'

All adaptor primers are resuspended in STE* buffer at 100μM. All PCR primers were used at 10 μM concentration. C3spacer modification is available from Integrated DNA Technologies.

Primers for IRR amplification (NlaIII-digested DNA):

Primary PCR

IRR 5'GGATTAAATGTCAGGAATTGTGAAAA 3'
linker primer 5'GTAATACGACTCACTATAGGGC 3'

Primers for IRL amplification (BfaI and AluI-digested):

Primary PCR

IRL 5'AAATTTGTGGAGTAGTTGAAAAACGA 3'
linker primer 5'GTAATACGACTCACTATAGGGC 3'

Secondary PCR (for IRR and IRL)

IR-A1

5'AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGCTCTTCCGATCT(barcode)
TGTATGTAAACTTCCGACTTCAACTG

Linker-A2

5'CAAGCAGAAGACGCATACGAGCTCTTCCGATCTAGGGCTCCGCTTAAGGGAC 3'

see info on barcoded primers

*STE Buffer 50 mM NaCl 10 mM Tris-Cl (pH 8.0) 1mM EDTA (pH 8.0)