Text S4: Effects of auditory scene complexity and dictionary size on CPA performance
CPA outputs parameters 
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 if it was not part of that auditory scene. The solutions are exact under the assumption that the scalar products between the dictionary elements that were present in a particular auditory scene were zero, that is:
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The maximal number n of dictionary elements, such as that they are mutually orthogonal, is f, the number of dimensions of the input vectors. It is possible to have a much larger dictionary of n (n>>f) elements, if the values of the estimated parameters 
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. In this section, we will show that, if the number of dimensions f is large enough, the dictionary elements will be approximately orthogonal and the algorithm is still valid. 
We start by perturbing the solution of section Text S3 by adding small deviations 
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These small parameters measure the deviation of the estimated parameters from the unperturbed solution, when 
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. The purpose of the following derivation is to express the perturbation factors 
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Inserting S4.3 and S4.4 into S3.23 and again separating into active and inactive indices, we get two equations. For inactive indices
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Similarly, we can derive an equation for 
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A part of the left-hand side cancels out such that


[image: image23.wmf]å

å

å

å

å

å

¹

Î

¹

Î

Ï

¹

Î

Ï

¹

Î

÷

÷

ø

ö

ç

ç

è

æ

+

+

+

+

>

<

+

÷

÷

ø

ö

ç

ç

è

æ

+

+

+

>

=<

>

<

l

i

,

A

i

l

k

,

A

k

A

k

l

,

k

k

k

,

i

l

,

k

k

k

,

i

l

l

,

i

2

i

i

,

l

l

k

,

A

k

A

k

2

l

,

k

k

2

l

,

k

k

l

2

l

2

i

,

l

l

i

,

A

i

2

i

c

c

c

)

1

(

c

)

1

(

c

)

A

(

c

)

c

(

)

c

)(

1

(

)

A

(

)

c

(

)

A

(

s

r

r

s

r

r
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Similarly as for the unperturbed case in Text S3, we will now construct a self-consistent solution of S4.5 and S4.7. To this end, we will assume that the deviations are small,
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. Furthermore, we assume that the scalar products c are small enough such that
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where p denotes the number of active elements, or equivalently, we assume that the number of active elements is bounded
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Using the assumption that 
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We can use this approximation to simplify S4.7 to obtain


[image: image29.wmf](

)

å

å

å

å

å

å

¹

Î

¹

Î

Ï

¹

Î

Ï

¹

Î

÷

÷

ø

ö

ç

ç

è

æ

+

+

>

<

+

÷

÷

ø

ö

ç

ç

è

æ

+

+

>

=<

>

<

l

i

,

A

i

l

k

,

A

k

A

k

l

,

k

k

k

,

i

l

,

k

k

,

i

l

,

i

2

i

i

,

l

l

k

,

A

k

A

k

2

l

,

k

k

2

l

,

k

l

2

l

l

i

,

A

i

2

i

,

l

2

i

c

c

c

c

c

)

A

(

c

)

c

(

)

c

(

)

A

(

c

)

A

(

s

s

r
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The left side of S4.10 is canceled out as
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The elements of the sums in the first term are 
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The order of magnitude is estimated according to the central limit theorem, yielding:
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We can apply the same assumptions to equation S4.5 for the inactive index set. Applying S4.9, we get
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By canceling out the left-side term, we obtain
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We can separate from the summations the terms that depend on k=l as
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Again, the order of magnitude is estimated according to the central limit theorem, yielding:
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A condition that the number n of dictionary elements is large enough, and that the auditory scenes are composed of a few elements p, would imply:
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Therefore
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and S4.17 becomes
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We can conclude then that 
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If we replace S4.21 in S4.13, we obtain
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The dependency on n on the second term cancels out, and we obtain 
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We will now derive an expression for the dot product 
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  as a function of the length f of the input signal
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and the variance is given by:
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This expression depends on the variance of the dictionary elements. Since the dictionary elements are normalized
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we can calculate the variance of the individual elements by:
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Therefore,
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By placing this expression into S4.25, we obtain
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We therefore approximate the distribution of the dot products c as the Gaussian distribution of zero mean and standard deviation
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Equations S4.21 and S4.30 state that CPA is robust to deviations from orthogonality of the dictionary elements (see Fig. 5A for a simulation example for a signal of 400 dimensions and 68000 dictionary elements). Equation S4.30 states that the deviations from the exact solution for the elements that took part in the auditory scene are small, if the number of dimensions f is large enough (see Fig. 5D for simulation results). The deviations also increase as the number of elements present in a scene p increases (see Fig. 5C).
Note that the derivation of this formula assumed that the distribution of
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has zero mean and therefore the order of magnitude of the sums in S4.13 and S4.17 scales like
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. If we assume a slight bias of
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, then the order of magnitude of
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will increase with n (see Fig. 5B).
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