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1 Data Details

Having been granted temporary access to Twitters firehose we mined the stream for over 6months
to identify a large sample of active user accounts. Using the API, we then queried for the complete
history of 3million users, resulting in a total of over 380million individual tweets covering almost
4 years of user activity on Twitter. Tab. S 1 provides some basic statistics about our dataset.

1.1 Tree Identification and Projection

All tweets in our dataset that constituted a reply were collected. Each such tweet contains informa-
tion not only about the id of the original tweet but also the user that sent it. Using this information,
each reply tweet maps directly to a directed edge. Individual trees can be identified by using depth
first search [1] to identify connected components in the resulting tweet-tweet graph. To ensure that
the full tree is found and not just a part of it, we treat each link as undirected for the purposes of
this identification. In this way we are able to extract the complete tree even if we happen to start
on one of the leaves. For each tree the root is then found by locating the node with kin ≡ 0, and
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Tweets 381, 652, 990

Timelined Users 3, 006, 180

Scraping Period Nov. 20, 2008 – May 29, 2009
Time span 4 years

Trees 25, 273, 871

Tweets in Trees 81, 728, 252

User in Trees 1, 720, 320

User-User Edges 68, 459, 592

Tab. S 1: Dataset Statistics.

distances from the root are measured by rerunning the DFS algorithm starting from the root and
respecting the direction of each edge.

The underlying reply network can be extracted by projecting the tweet trees to a user graph:
User A is connected to user B by a directed outgoing edge if A replied to a tweet sent by B. Over
time, any pair of users can exchange multiple replies either in a single “conversation” (tree) or
through multiple conversations. The number of messages sent from one user to another is used as
the weight of the corresponding directed edge and is taken to signify the strength of the connection
between the two users, with higher weights representing stronger connections.

1.2 Online Conversations

Each reply creates a connection between two tweets and their authors, so we can define a conver-
sation as a branching process of consecutive replies, resulting in a tree of tweets. From our dataset
we extracted and analyzed a forest of over 25 million trees. Trees vary broadly in size and shape,
with most conversations remaining small while a few grow to include thousands of tweets and
hundreds of users, as shown in Fig. S 1.

A directed user-user network can be built by projecting conversation trees to detail how users
interact and establish relationships among themselves. Bidirectional edges signify mutual inter-
actions, with stronger weights implying a more frequent or prolonged interaction between two
individuals.

All of our analysis will be performed on this user-user conversation network. We consider a
user to have out degree kout if he or she replies to kout other users, regardless of the number of
explicit followers or friends the given user has. By focusing on direct interactions we are able to
eliminate the confounding effect of users that have tens or hundreds of thousands of followers
with whom they have no contact and are able to focus on real person to person interactions [2].

2 The Model

The model that we propose is based on the assumption that the biological and time constraints are
the key ingredients in fixing the Dunbar’s number. We consider a static network G, characterized
by a degree distribution P(k), where each agent (node) i is connected to its nearest neighbors j
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Fig. S 1: Tree characterization. A)Distribution of the number of tweets in a tree. B) Distribution
of the number of shells. C) Distribution of the number of users. D) Tree size vs depth. The broad
tailed nature of all of these quantities indicates the diversity of behaviors displayed by the users
in our dataset.
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through two directed edges, i → j and j → i. Whenever a message is sent from node i to node j,
the weight of the (i, j) edge, wij is increased by one. The total activity of each user is given by the
sum over all of its outgoing edges and the out degree is identically equal to the in degree:

kout
i = kin

i =
ki

2
, ∀i ∈ G. (1)

We use this framework in order to distinguish between incoming and outgoing messages. Users
communicate with each other by replying to messages. When agent i receives a message it places
it in an internal queue that allows up to qmax,i messages to be handled at each time step. In
the presence of finite resources each agent has to make informed decision on what are the most
important messages to answer. This is a direct consequence of the physical constraints that we
model by assuming that messages are stored according to a priority set proportional to the total
degree of the sender j. For each user the basic quantity that we studied is the average number of
interactions per connection:

ωout
i (T) =

∑
jwij(T)

kout
i (T)

. (2)

At each time step each agent goes through its queue and performs the following simple operations:

1. The agent replies to a random number r of messages between 0 and the number of messages
qi currently present in the queue. The messages to be replied are selected proportionally to
the priority of the sending agent, its degree. A message is then sent to j, the node we are
replying to, and the corresponding weight wij is incremented by one.

2. Replied messages are deleted from the queue and all incoming messages are added to the
queue in a prioritized order until the number of messages reaches qmax,i. Messages in ex-
cess of qmax are discarded. The dynamical process is then repeated for a total number of
time steps T . In order to initialize the process and keep into account the effect of endoge-
nous random effects each agent can broadcast a message to all of its contacts with some
small probability p. One may think of this message as a common status change, or a TV
appearance, news story, or any other information not necessarily authored by the sending
agent. Since these messages are not specifically directed from one user to another, they do
not contribute to the weight of the edges through which they flow.

It is well known [3] that the following, flowers networks on twitter are well approximated by a
power-law degree distributions. For this reason we used as baseline a scale-free [4] network of
exponent γ = −2.4 and N = 105 nodes. We set the broadcast probability as p = 10−4 and T = 104

so that each individual on average will have the minimal activity of one broadcast. The queue size
has been extract from a Gaussian centered in qmax, that we set in the range between 50 and 300,
and we set σ = 10. In the next sections we will describe the effect of each parameter in our model.

2.1 Effect of the Time Window T

One of the parameters of our model is the time window T during which we study the dynamics.
This parameter regulates the maximum number of messages that will circulate in the network. In
the first time steps the first messages will start to being sent among users and the queues start
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Fig. S 2: ωout as a function of kout for qmax = 100, σ = 10, scale-free network with γ = −2.4 and
different values of T . We present the medians over 500 runs.

to get messages in and out. After a while we can aspect that the system reaches a dynamical
equilibrium. In Fig. S (2) we show the behavior of our observable ωout for different values of
T , in particular we chose T = 104, 1.5 × 104, 2 × 104. The effect of time is clearly a shift on the
y axis and a small change in the position of the peak. The first effect is due to the fact that the
number of messages circulating in the systems increase linearly with T . The second effect is due
to the reduction of fluctuations when more messages are sent. The peak becomes more clear and
defined.

2.2 Effect of Broadcast Probability p

The effect of the broadcast probability is different on respect to the effect of the time window T .
First of all our observable ωout is linearly proportional to T in all regimes of kout this is not true
for p. The effect of p is crucial for users with a small number of contacts. As the p increases they
will receive more messages and their activity will increase too, this does not occur in the other
limit. When the saturation takes place the ωout becomes completely independent of p. As show
in details in a mean-field approach (Section (2.4)) for values of kout small with respect to the queue
size,ωout scales linearly with p. Instead for a number of contacts much bigger than the queue size
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Fig. S 3: ωout as a function of kout for qmax = 100, σ = 10, scale-free network with γ = −2.4,
T = 104 and different values of p. We present the medians over 500 runs.

ωout is independent of p. These considerations are validated by our simulations as shown in Fig.
S (3). We see a clear dependence on p for small values of kout instead the same behavior for bigger
values of kout.

2.3 Effect of Network’s Properties

Inspired by several studies [3, 5, 6, 2] we fix the baseline of our model using scale-free networks.
It is important then to study how differences in the network structure affect the results. In this
section we consider the effect of the exponent γ. As show in Fig. S (4) we run our model on top
of scale-free networks with γ = −2.2,−2.4,−2.6,−2.8. As clear from the plot for smaller values
of γ (bigger value in absolute value) gaps on kout start to emerge. These are due to the network
structure. The shape and position of the peak is the same for all the curves. The differeces are
evident just on the peak height that increase as γ decreases. This is due the different redistribution
of degrees and to the fact that with small γ the selection effect is more and more important. So we
can say that the result are robust on γ.

Modeling users’ activity on Twitter networks: validation of Dunbar’s number
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Fig. S 4: ωout as a function of kout for qmax = 100, σ = 10, T = 104, p = 5 × 10−4, scale-free
network with different values of γ. We present the median over 500 runs.
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2.4 Single User Analytics

As a way to better understand the mechanisms we describe, we analyzed the behavior of a single
user i. In this mean-field approach its dynamics can be easily derived.
Let us consider ki the degree of the user i and qmax,i its queue size. It has a set of kout

i = ki/2

out-going links that it uses to send messages to its ki/2 contacts and a set of kin
i = ki/2 in-coming

through which it receives messages from it contacts. Its neighbors will have a priority kj that we
extract for a distribution P(k). The rules of our model are applied even in this single user case for
T time steps. The probability that a neighbor jwill send a message to the user i is:

pji = p+
ki

< k > kj
, (3)

where as before p is the broadcast probability. The average number of messages that the user will
receive at each time step t is then:

〈R〉 =
∑

j

pji = pkin
i +

ki

< k >

∑
j∈kin

i

1

kj
. (4)

Since the number kj are extracted from the same distribution the sum scales linearly with the
number of element, kin

i . For this reason we can write:

〈R〉 =
∑

j

pji = p
ki

2
+ c

k2
i

2 < k >
, (5)

where c is a constant fixed by the distribution. The number of messages the user get from its
contacts scale as the square of its degree, since the its priority is proportional to it as well as the
number of in-coming connections.
Two different regimes are found: ki � qmax,i and vice versa.
In the first case the number of messages that the user will receive is small. It is not popular and in
principle it can reply to all of them at each time step. We can consider that in this regime its queue
is never completely full. Using the Equation (5) we get:

ωout
i (T) =

1

kout
i

F(R1, R2, . . . , RT ;qmax,i), (6)

where F is a function of all the messages that are reicived by the users and its queue size, and Rt

are the actual number of messages that the user reicive at the time t. It takes into account that fact
that at each time step the number of sent replies is selected uniformly between 0 and the number
of messages present in the queue. So after one time step the number of replies is:

S1 = ξ1R1, (7)

where ξ1 is a random number uniformly distribuited between 0 and 1. The number, S2, of message
that the user send at the second time step is a random fraction of the messages present in its queue:

S2 = [R1(1− ξ1) + R2] ξ2. (8)

Modeling users’ activity on Twitter networks: validation of Dunbar’s number
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For t = 3we get:

S3 = {[R1(1− ξ1) + R2] (1− ξ2) + R3} ξ3 = [R1(1− ξ1)(1− ξ2) + R2(1− ξ2) + R3] ξ3, (9)

and so on. We can approximate these expressions using instead of the Rt the average value 〈R〉.
For the general t it is easy to show how:

St ∼ 〈R〉ξt

1+

t∑
j=1

t−1∏
i=j

(1− ξi)


= 〈R〉ξt

[
2− ξt−1 +O(ξ2)

]
= 〈R〉

[
2ξt − ξtξt−1 +O(ξ3)

]
. (10)

The total number of messages sent is the numerator ofωout and the sum of all the St:

t=T∑
t=0

St ∼ T〈R〉, (11)

Because each sum of product random numbers is order T . Using this we can write:

ωout
i (T) =

∑t=T
t=0 St

kout
i

∼
1

kout
i

T

[
p
kout

i

2
+ c

(kout
i )2

2 < k >

]
∼ T kout

i . (12)

In this regime we aspect then a linear increase with λout
i of the average number of replies per con-

nections. As show in Fig. S (5) this is recover in the simulations.
The other regimes is found for a number of contacts bigger than the queue size. In this case the
user at each time step gets a lot of messages and it is not able to handle all of it. The saturation
process takes then place and it will reply to a small fraction of the total number of messages it
is getting prioritizing them. At each time step this number is a random variable uniformly dis-
tributed between 0 and qmax,i. We can then write:

ωout
i (T) ∼

1

kout
i

T∑
t=0

ξtqmax,i. (13)

The ξts are random variable uniformly distributed between 0 and 1 so that each time step the
number of replies is a random fraction of the queue size. For T large enough we get:

ωout
i (T) ∼

T

2kout
i

qmax,i. (14)

In this regime then we get a different scaling, typical of saturation problems. These arguments are
in perfect agreement with the numerical results as shown in Fig. S (5).
We have shown two different regimes. A linear increasing behavior and a decreasing one. In the
between of these opposite cases we will find a maximum of the function. The position of these
peak is in general function of the queue size.
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Fig. S 5: ωout as a function of kout for qmax,i = 50, σ = 10, T = 103 and p = 10−3. Each
point correspond to the median among 103 runs in which the dynamic of the single users has been
implemented. The distribution of the priorities of the ki neighbors are extracted from a power-law
distribution with γ = −2.1.
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