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Appendix S1: Statistical and Analytical Details
Collyer, Heilveil, and Stockwell

Pool-adjusted shape values

Univariate and multivariate analyses of variance (ANOVA and MANOVA,
respectively) rely on linear models for estimation of fixed and random effects. Multivariate
test statistics (e.g., Wilks’ A) for MANOVA- which do not have proper distributions under
null hypotheses - must be approximated by F statistics to assess significance [1]. Problems
arise, however, in low-dimensional cases (e.g.,, when the number of response variables
exceeds the number of responses, or when the number of model parameters is large
compared to the number of responses) because there is no solution for conversion of
multivariate test statistics to F statistics in some cases [1] and type-I error rates are
exceedingly high for small subject-variable ratios [2]; nevertheless, effects can still be
estimated by linear models, and appropriate statistical tests can also still be evaluated

using a portion of model effects.

Our data suffered from low-dimensionality because the number of pools was
smaller than the number of fixed effects. This problem was alleviated by adjusting
individual fish shapes by their pool effects. The linear model for shape analyses in our

study had the formy,, = p+size+p, +s, +ps; +pool, |ps; +¢&,,, , meaning thatany 1xp

vector of p shape values (y) for I*h individual fish in the ith population and jth salinity
treatment, assigned to the kth pool, is described by the overall mean (), plus
corresponding population (p), salinity (s), and interaction (ps) fixed effects, plus the pool

random effect (nested within the population x salinity interaction), plus the covariate, size
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(measured as log centroid size - see article). (Note that bold values refer to vectors.) The
vector, €, isa 1xp vector of residuals. The linear model can be written in matrix form as
Y = X + € to summarize that the n vectors of shape values in the nxp matrix, Y, are a

function of covariates and dummy variables in the nxk design matrix, X, for the k
parameters needed to describe the linear model above. The kxp matrix of regression

coefficients, B, describes the effects of each parameter in the model, and the nxp matrix, &,
. . . . 0 Ty Y (vT

is a matrix of residuals. Parameter effects can be estimated as p = (X X) (X Y), where
the superscripts, T, and -1, refer to matrix transpose and inverse, respectively [3]. Any

estimated shape is thus solved as y = xﬁ, where X is a vector of appropriately coded

parameters.

An important property of ﬁ is that any estimated parameter effect is calculated with

respect to other effects in the model. For example, population effects are estimated with

respect to pool effects. Shape values can thus be estimated for only effects of interest

without excluding extraneous sources of shape variation. Let matrix, §’, be a matrix of
coefficients found in B, but with pool effects removed. This procedure is the same as mean-

centering, if the intercept is removed [4]; therefore, the equation Z = XB’ + € creates

adjusted shape values, Z, which have pool effects removed, but population and salinity
effects are still estimated with respect to pool effects. A linear model of the form

Z,,=N+size+p,+s, +ps, +&; can be described such that individual fish, not pools are

iik

subjects, and &;, does not inherently contain pool effects. Analyses of variance can be
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performed on this model without the aforementioned statistical problems; however, one

must be cautious that inflation of statistical power can result in incorrect inferences, [5].

In order to perform multivariate analysis of variance (MANOVA) without
introducing problems of statistical power, we used a permutation procedure, which
randomized individual shape values and recalculated model parameter estimates with each
permutation. Sums of squares and cross products (SSCP) matrices were calculated for each
effect [3] and the traces of these matrices - which are the total sums of squares for each
effect - were used as test statistics. P-values were determined as percentiles of the
observed test statistics in the empirical distributions of randomly generated statistics. This
procedure has three key advantages. First, the test statistics are not plagued by improper
degrees of freedom. Second, the test works equally well for univariate data, as the trace of
a SSCP matrix is the sums of squares of the effect, itself. Third, R? values can be calculated
for each effect, and can be compared within and between different analyses of univariate or
multivariate shape data. We performed ANOVA and MANOVA for both male and female
data sets using this method with 10,000 random permutations (the observed values

constituting one permutation).

Visualization of multivariate reaction norms

Compared to univariate reaction norms in Figs 2 & 3, males and females had some
differences in comparison of multivariate reaction norms, shown as vectors in the principal
component plots of Figs S1 & S2. First, reaction norms were more aligned with the first PC
for males, indicating that phenotypic plasticity in body shape was rather consistent with

differences due to population source (Fig S1). Reaction norms for females indicated that
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phenotypic plasticity was associated more so with the second PC, suggesting that body
slendering in response to salinity was somewhat independent of evolved differences in
body depth. For females more so than males, phenotypic plasticity in body shape for SS
fish (principally along PC 2) was strikingly more independent of evolved differences in
shape (principally along PC1). This visual result confirms why the population source x
salinity interaction was significant in the MANOVA (Table 2) for females.

Although not obvious in the PC plots, differences between MM and SS body shapes were
more pronounced in males. Procrustes distance, d, between SS high salinity fish and MM
low salinity fish - the greatest inter-group difference - was 0.044 for males, compared to
0.027 for females. Females and males had similar ranges of phenotypic plasticities: Males:
0.013 <d <0.024 and Females: 0.012 <d < 0.021. These results confirm the differences
between males and females in terms of the ANOVA and MANOVA results. Males tend to
have greater differences in shape based on population source. These results also suggest
that the response to salinity changes is similar in scale for the two native strains; however,
the differences in direction of shape change in the morphospace (Figs S1 and S2) indicate
that the two populations might have different genetic covariances in the traits that make up
body shape. Comparison of shape changes between pure Salt Creek fish (SS) and the other
mesocosm types, between low and high salinity, suggests that SS fish deepen the dorsal
aspect of the bodies in low salinity, whereas body deepening is more general for Malpais
Spring (MM) fish and hybrids (either MS or SM).

Finally, maternal effects are more apparent in females, at least for hybrids from Malpais
Spring female parents. MS hybrids were more similar to MM fish than SM fish. For both

males and females, hybrid reaction norms were closer in the morphospace to the MM
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reaction norm than the SS reaction norm, although this is more readily apparent for
females. These results suggest that shape differences between MM and SS fish might be
exacerbated by maternal effects. Based on the close proximity of MS and MM reaction
norms, and the distinction of SM and SS reaction norms, females from less saline
environments are prone to produce deep-bodied offspring but females from saline

environments are not prone to produce slender-bodied offspring.

Multivariate AIC

The formula for multivariate AIC is given by Bedrick and Tsai [6] as

E
AIC = n{h{g}_ p:|+ 2[pk+0.5p(p+1)], where n is the number of subjects, k is the number
n

of model parameters, and p is the number of response variables. This equation has two
parts: the first part express the log likelihood of a model, where |E| is the determinant of
the sums of square and cross-products matrix of the model error; the second part is the
parameter penalty. For univariate data the parameter penalty simplifies to 2(k + 1), which
is often called 2K for convention [7].

Burnham and Anderson [7] recommended that a A AIC value of less than 2 suggests
that neither of two competing models is sufficiently better than the other. This “rule of
thumb”, however, only applies to univariate response data. This value suggests that based
on AIC scores, one would not expect two models with the same log-likelihoods to differ by
more than one parameter. For example, if two models had the same log-likelihood but
differed by one parameter (i.e., one model had k + 1 parameters compared to the k

parameters of the other) for univariate response data, then A AIC =
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2[(k+1)+1]-2[k+1]=2. Thus, a difference in AIC values of 2 more or less suggests that

these models would not be expected to differ by more than one parameter if their log
likelihoods were similar.

Using the multivariate development of this logic [6] for the p possible shape
variables in a morphmetric study, two models with the same likelihood and which differ by

one parameter would also differ by A AIC = 2p, because:

AIC,— AIC, = {nl{m{@}r p} 2[pk+1)+0.5p(p+ 1)]‘{;12{1“('13_[3'} p]+ 2[p(k)+05p(p+ 1)]J
n; n,

=2[pk+1)+0.5p(p+1]-2[p(k)+0.5p(p+1)]

~2[ p(k+1)- pk]

=2[pk+ p— pk]

~2p
Thus, it is difficult to either use the “rule of thumb” frequently used by many in model
comparisons or to compare results of model comparisons between different numbers of
principal components used to describe shape variables. The “rule of thumb” scales
proportionally to the number of shape variables used; therefore, multiplying AIC values by

J[E

p
1/p nullifies this scaling, i.e., AIC =n "2kt p+1.
pP
Applying the same logic (of same log likelihoods) yields AIC,— AIC, =2(k+1)-2k=2. We

used this adjustment of AIC so that univariate and multivariate models would be more

comparable.
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