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Sample Preparation 
 

Serum samples were statistically randomized (3X) and the sample processing was performed 

blind to treatment group.  Samples were thawed on ice and vortexed briefly.  50 uL of each 

serum samples was diluted 1:4 with Agilent immunodepletion Buffer A (5185-5990) and 

centrifuged through a 0.22 µm filter (5185-5990) at 10000 rpm.  A 10 uL aliquot was removed 

for total protein assay (mini Bradford, Bio-Rad, Inc.), and the samples were pipette into glass LC 

vials and stored in the autosampler at 4° C until analysis.  The Agilent Multi Affinity Removal 

Column HU-14, 4.6 × 100 mm (5188-6558), was installed on an Agilent 1100 HPLC system, 

and conditioned with five 20µL plasma depletions before the first sample injection (normal 

plasma from Bioreclamation, Inc.).  HPLC-based immunodepletion and fraction collection was 

then performed as instructed by the manufacturer, except that only 20 ul serum equivalent (100 

ul total) was injected on the column in order to ensure that the column had sufficient capacity to 

remove the target proteins across the sample cohort.  The 1 mL unbound fraction, collected from 

7 to 17 minutes during depletion, was desalted and buffer exchanged into 50 mM ammonium 

bicarbonate (EMD 1.01131.0500) at least 100x using a 10 kDa MWCO filter (Amicon 4, 

Millipore, Inc.).  The final sample was concentrated to approx 50uL, after which protein 

concentration was measured with a mini-Bradford assay.  A 5 ug aliquot of each sample was run 

on a Novex SDS-PAGE gel (Invitrogen, Inc.) as quality control measure.  Approximately 20 ug 

of each sample was aliquoted for digestion, and sample concentrations were normalized to 

approximately 0.8 ug/uL with 50 mM ammonium bicarbonate (EMD).  Following normalization, 

Rapigest SF (Waters, 186001861) was added to 0.1% w/v.  Samples were then reduced, 

alkylated, and digested following a standard in-solution digestion protocol 

(http://www.genome.duke.edu/cores/proteomics/sample-preparation/).  The samples were 
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reduced in 10 mM dithiothreitol (VWR, VW1506-02), alkylated in 20 mM iodoacetamide 

(Calbiochem 407710), and digested with 0.4 ug sequencing grade modified trypsin (Promega 

V5111).  After digestion overnight, samples were acidified to 1% trifluoroacetic acid (Pierce, 

PI28904) and heated for 2 hrs at 60° C to remove Rapigest.  Samples were then centrifuged at 

15,000 rcf for 10 mins and the supernatant was pipetted into total recovery LC vials (Waters 

Corporation). 

 

LC-MS Operation 
 

Each sample was analyzed by injecting approximately 1 ug of total digested protein onto a 75um 

× 250 mm BEH C18 column (Waters) and separated using a gradient of 5 to 40% acetonitrile 

with 0.1% formic acid, with a flow rate of 0.3uL/min, in 120 minutes on a nanoAcquity liquid 

chromatograph (Waters).  Electrospray ionization was used to introduce the sample in real-time 

to a Q-Tof Premier mass spectrometer (Waters), collecting data in MSE mode with 0.9 second 

alternating scans between low CE (6V) and a high CE ramp (15V to 40V).  Data collection in 

this fashion supplies sufficient sampling across the chromatographic elution of a peptide for 

accurate quantitation, while also allowing acquisition of data used for the qualitative 

identifications.  Technical reproducibility was assessed by running a subset of the samples in 

triplicate (n=6) and also by analyzing a pooled sample at predefined intervals.  In addition, a 

number of data-dependent LC-MS/MS analyses were performed using the same LC gradient and 

injection volumes; these runs provided column conditioning prior to quantitative analysis, and in 

some cases complementary peptide identifications. 

 

Preparation of data for analysis 
 

To accomplish data alignment and feature quantitation across all biological samples and thus 

form the matrix discussed in the statistical methods section below, we utilized Rosetta 

Elucidator™v3.3 software package (Rosetta Biosoftware) to import and align all MSE and data-

dependent acquisition (DDA) raw data files.
1-5

  Database searches were performed against a 

forward/reverse Swissprot database (v 56.5) with human taxonomy, using ProteinLynx Global 

Server v2.4 (IdentityE algorithm,Waters Corporation) for MSE searches or Mascot v2.2 for 

DDA data.  Database searches are either performed externally and results imported (PLGS 2.4) 

or queued directly from within Elucidator (Mascot) to allow identification of many of the 
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quantified features in the proteomic dataset.  All database searches were performed with high 

mass accuracy on precursor and product ions (typically 20 ppm precursor and 0.04Da product 

ion tolerance), with fixed carbamidomethylation(Cys), variable oxidation(Met) and variable 

deamidation(Asn and Gln).  Annotation of the peptides is accomplished at an estimated 1% FDR 

using the Elucidator implementation of PeptideProphet algorithm.
6
  Visual scripting within 

Elucidator is utilized to extract feature intensities for those features which have quantitative 

values above the 1000 counts (approximately 10th percentile) in 50% of the samples.  The final 

file for statistical analysis is made up of a matrix of intensities, with the rows corresponding to 

isotope groups and the columns to technical observations (LC-MS analysis).  An isotope group is 

defined as all of the peaks associated with a single peptide at a specific charge state and retention 

time.  This level of quantitation combines peaks from the same peptide that differ according to 

the number of carbon 13’s incorporated, but does not combine the same peptide measured at 

different charge states.  The intensity of an isotope group for a given sample is the total volume 

under the feature peaks associated with that isotope group.  This is monotonically related to the 

concentration of that isotope group in the original sample, and it is these intensities that we work 

with.   

 

Metaprotein Statistical Model  
 

In order to estimate metaprotein abundance, we build our model from pre-processed data 

(described in previous section) with intensity estimates aggregated at the isotope group level.  

We introduce the term metaprotein here to differentiate this approach from those in which 

peptide identifications lead to a fixed assignment of a particular peptide to a protein.  In our 

modeling approach, we allow the possibility that an isotope group will be incorrectly identified, 

or be correctly identified, but have a pattern of expression that is distinct from the bulk of 

peptides from the corresponding protein.  In practice, this new grouping approach often leads to 

metaproteins which may be dominated by isotope groups from a particular protein, but which 

contain isotope groups from other proteins as well. 

 Let   be a    -dimensional matrix consisting of measurements on   isotope groups 

across   samples. 
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        (1) 

 

The  -dimensional vector   has elements    representing the mean expression of isotope group 

  and    is a column vector of ones.  The    -dimensional matrix   represents latent factors 

which will be learned from the data and   is a    -dimensional matrix of factor loadings with 

elements     .  The random variable   is a     matrix of idiosyncratic noise. 

 Our goal is to estimate relative protein concentration from this model using the latent 

factors in Λ.  Recall that we have identifications for some subset of the isotope groups.  With this 

in mind, suppose we identify each column of   and the corresponding column of   with one 

identified protein.  If we set      = 1 when isotope group   is from a peptide identified as coming 

from protein   and      = 0 otherwise, then our model is describing the expression pattern of 

each isotope group as a noisy approximation of the expression pattern of the protein, where the 

protein is known. 

Retaining, for the time being, the idea of fixing      in this way, we wish to handle the 

possibility of changing sensitivity and changing protein concentration from sample to sample.  

To account for this, we introduce an additional set of latent factors into equation 1. 

 

      
       Λ

    (2) 

 

We now introduce latent factors   and loadings          where       which we use to 

account for systematic structure in the data that is sample specific.  Because these features will 

span almost all peptides, we utilize a generic Gaussian prior for the elements of  . 

 

                  

 

This distribution represents our belief that these effects span all isotope groups, but with varying 

effect sizes.  This prior also minimizes identifiability issues between  , which is not sparse, and 

  which is very sparse with somewhat informative priors. 

We want to modify our prior on   to allow for possible post-translational modifications 

and for misidentifications.  With this in mind, we want to relax our strict assignment of zeros and 
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ones in the loadings matrix  .  Instead, our prior distribution for      will reflect our level of 

certainty that we know which factor should represent the expression of this peptide.  When we 

have an identification for peptide   and have mapped that peptide to protein  , our prior 

distribution will reflect an increased certainty that      ≠ 0. 

We introduce a  -dimensional vector of latent variables (  ) which identifies the non-zero 

column of   for each isotope group.  When we have an identification that suggests that isotope 

group   comes from protein  , our prior distribution for    is 

 

                        

                             

 

 

where    is substantially larger than    to reflect our prior belief that     .  We default to 

   = 500 ∙   , but have tried values from 100 through 1000 and these lead to only minor shifts in 

metaprotein membership.  As the weight of this prior decreases (   decreases while the ratio of 

   to    stays the same) we are decreasing the importance of identification information and 

placing progressively more importance on correlation structure.  We have found, for the 

Hepatitis application below (omitted from this document; available upon request), that the 

association of metaproteins with outcome doesn’t substantially change until we increase the 

weight of the identification data to very high levels.  We find that using    = 1 leads to 

interpretable metaproteins without loss of association with the outcomes.  For peptides which do 

not have identifications, we utilize an unbiased prior    ~        .  Because different peptides 

showing similar expression patterns may, nonetheless, show a different magnitude of expression 

of that pattern due to the relative sensitivity of the mass spectrometer for the peptide, we model 

each of the non-zero elements of   independently, such that      ~          when    =   and 

     = 0 otherwise.   

We note that, in the limit as    → ∞ we obtain an ANOVA model in which there is no 

uncertainty about which metaprotein each isotope group belongs to.  This is precisely the fixed 

effects, feature-specific variance model by Clough et al.
7
 which implies that

7
 is a limiting case of 

the model we present here.  That limiting model implies that identifications are assumed to be 

accurate and assumes that post-translational modifications are of minor importance.  Clough et 

al. correctly point out that, by collecting features one obtains higher power for detecting 
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associations versus simple tests of association with individual isotope groups.  That model, as 

well as the one we present here, may be expanded with additional design vectors identifying 

experimental groups or particular interventions if so desired.  These may be included as rows in 

  which are simply not updated in the MCMC. 

 To complete the model specification, we assume a conjugate, row specific inverse 

gamma prior for the variance of  .  This allows differing variance estimates for each isotope 

group.  Because we are working with a relatively large number of samples (and thereby have no 

issues with identifying variance), we use a prior with mean 1 and variance 100.  We also assume 

that the individual columns of   arise from a uniform distribution on the  -dimensional sphere 

of radius   .  The model is fit via Markov chain Monte Carlo (MCMC) and the result of this fit 

is a set of draws from the posterior distribution of all of the model parameters.  All prior 

distributions are conjugate, and therefore we may use Gibbs sampling to update the model 

parameters at each step of the MCMC.  The data sets we are modeling have been aggregated at 

the isotope group level, and as such they have between 20 and 40 thousand measurements per 

sample.  While our sampling scheme is able to fit this data in just a few hours on a desktop, we 

expect that some sort of parallel processing will be desirable for data that is aggregated at the 

feature level.  We have tested our model on multiple simulated data sets of various sizes (both 

sample size and number of isotope groups) to verify the accuracy of the parameter recovery even 

in the presence of intentionally mislabeled isotope groups. 
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