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Appendix S2: VGE model

Selection gradient

In this appendix, I present the derivation of the selective pressures on belligerence and bravery under
the VGE demographic scenario. For this scenario, the demographic events s1, s2, s3, and s4, determine
the number of individuals that reach adulthood in a group after stage 4 of the life cycle. For the events
s1, s2, s3, and s4, the group size that obtains is, respectively, N + (1 − h)N,N,N , and hN (see section
”Demographic events” of the main text). A focal group is thus likely to fluctuate between different sizes
across generations.

These demographic fluctuations make the calculations of the selection gradient on an evolving pheno-
type z more complicated. In the presence of such demographic fluctuations and if the number of juveniles
produced by each individual is assumed to be large (or is Poisson distributed), the selection gradient can
be expressed as

S = Sf + SPr (B-1)

[1], where

Sf =
∑
s

∑
s′

ν(s′)

[
∂fp(s)

∂z•
+
∂fp(s)

∂zR0
RR(s)

+
∑
s∗

Pr(s∗)

(
∂fd(s, s∗)

∂z•
+
∂fd(s, s∗)

∂zR0
RR(s∗)

)]
Pr(s′ | s) Pr(s) (B-2)

and

SPr =
∑
s

∑
s′

ν(s′)
∂Pr(s′ | s)

∂zR0
fp(s)RR(s) Pr (s) , (B-3)

where all sums are over all elements s of the set S = {s1, s2, s3, s4} of demographic events (see Fig. 1), and
where the components of selection follow from rearranging eqs. 26–27 of [1] as given by eqs. A-48–A-49
of [2]. All partial derivatives in eqs. B-2–B-3 are evaluated at the phenotypic value of the resident allele
(z• = zR0 = z1 = z) and all other quantities in S are also evaluated at this neutrality point.

Because the four demographic events determine the state of a focal group (its size), I will from now
on, and for ease of presentation, refer to the four events s1, s2, s3, and s4, as the demographic states of
a group. The size of a focal group is the main variable that will affect the components of selection given
by eq. B-2 and eq. B-3, and which depend on four type of quantities, the justification of which are given
in [1].

(1) Two frequency functions. First, the probability fp(s) that a gene sampled in a group, which is in
a given state s′ in the offspring generation, descends from an individual from that group that was in state
s in the parental generation. This probability is independent of the states of the group in the offspring
generation [1], which follows from the assumption that fecundity is Poisson distributed (or very large).
The second frequency function is the probability fd(s, s∗) that a gene sampled in a group, which is in a
given state s′ in the offspring generation and was itself in state s in the parental generation, descends
through migration from a group in state s∗ in the parental generation. For completeness, I mention
that these frequency functions can be related to individual fitness functions, which measure the expected
number of offspring reaching adulthood of a focal parent conditional on the same demographic events
described for the frequency functions, by wp(s, s′) = fp(s)Ns′/Ns, wd(s, s′, s∗) = fd(s, s∗)Ns′/Ns∗ [1],
where Ns is the number of individuals in a group in demographic state s.

(2) The stationary probability Pr(s) that a focal group of individuals is in demographic state s, which is
the steady-state distribution of the Markov chain with forward transitions probabilities Pr(s′ | s), where



2

s is the demographic state of the group in the parental generation and s′ is its state in the offspring
generation. This stationary distribution satisfies

Pr(s′) =
∑
s

Pr(s′ | s) Pr(s). (B-4)

(3) The relative reproductive value ν(s) of all individuals within a group in demographic state s,
which satisfies the recursion

ν(s) =
∑
s′

[
fp(s) Pr(s′ | s) +

∑
s∗

fd(s∗, s) Pr(s′ | s∗) Pr(s∗)

]
ν(s′) (B-5)

and
∑

s ν(s) Pr(s) = 1, where ν(s) Pr(s) is the reproductive value of all groups in state s in the population.
In the special case where the demographic states are independently distributed across generations Pr(s′ |
s∗) = Pr(s′), in which case eq. B-5 can be simplified by using ν(s) Pr(s) so that the reproductive value
of a group in state s is directly given by

ν(s) = fp(s) +
∑
s∗

fd(s∗, s) Pr(s∗). (B-6)

(4) The probability of identity by descent RR(s) between two homologous genes sampled with re-
placement in a group in state s. This probability can be expressed as

RR(s) =
1

Ns
+

(
Ns − 1

Ns

)
R(s), (B-7)

where Ns is the number of individuals in a group in demographic state s and R(s) is the probability of
identity between two homologous genes sampled without replacement in that group. This probability
satisfies the recursion

R(s′) =
∑
s

Pr(s | s′)fp(s)2RR(s), (B-8)

where Pr(s | s′) is the probability that a group in state s′ in the offspring generation derives from a
group in state s in the parental generation [backward transition probability of the demographic states
Pr(s | s′) = Pr(s′ | s) Pr(s)/Pr(s′)], and fp(s)2 is the backward migration probability that a pair of genes
sampled in a group in a given state s′ in the offspring generation both descend from the same group that
was in state s in the parental generation.

Frequency functions

For the life-cycle assumptions described in the main text, the frequency functions are given by

fp(s) =
(1−m)b•Ns

(1−m) brNs +mbdNeq
(B-9)

and

fd(s, s∗) =
mb•Ns∗

(1−m) bdNs +mbdNeq
, (B-10)

where Neq =
∑

sNs Pr(s) is the average group size in the population [1, eqs. 33–34] with the number of
adults in the different demographics states being given by Ns1 = [1 + (1− h)]N , Ns3 = [h+ (1− h)]N =
N , Ns2 = N , and Ns4 = hN .
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On substitution of these numbers into eq. B-9 one has

fp(s1) =
(1−m)b•[1 + (1− h)]

(1−m) br[1 + (1− h)] +mbd (Neq/N)

fp(s3) =
(1−m)b•

(1−m) br +mbd (Neq/N)

fp(s2) =
(1−m)b•

(1−m) br +mbd (Neq/N)

fp(s4) =
(1−m)b•h

(1−m) brh+mbd (Neq/N)
, (B-11)

and similar calculations lead to explicit expressions for the frequency functions for the migrant offspring
[fd(·, ·)].

Assuming a population of resident individuals and substituting the frequency functions into eq. B-5
results in complicated expressions but they can be handled with a symbolic algebra system like Mathemat-
ica [3]. Assuming that the demographic states are independently distributed across generations, eq. B-6
still results in complicated expressions but when dispersal is complete (m = 1), the group reproductive
values reduce to

ν(s1) = 1 + (1− h), ν(s2) = 1, ν(s3) = 1, and ν(s4) = h, (B-12)

which is similar to those obtained under the DGR scenario (eq. 13 of the main text).

Transition probabilities

In order to evaluate S, we also need the transition probabilities of the demographic states for a focal
group, which, as for the DGR scenario, will depend on the fighting and winning probabilities. The fighting
probabilities between groups are assumed to be the same as those in the DGR scenario (eq. 1 of the main
text or eq. A-5 of Appendix S1), with the only difference that the average phenotype among subadults
in the focal group after dispersal may now depend on the demographic states because the frequency of
individuals in the focal group after dispersal and descending from the focal group may depend on the
size of that group in the parental generation.

When warfare occurs before the dispersal of subadults, we have xA0 = xR0 and yA0 = yR0 , but when
warfare occurs after the dispersal of subadults, we have to take into account that migration has changed
the average phenotype in the focal group (see eq. 2 of the main text). The average level of belligerence
in the focal group when the size of the focal group in the parental generation is Ns is xA0 (s) = [(1 −
m)Ns]/[(1−m)Ns +mNeq]xR0 +[mNeq]/[(1−m)Ns +mNeq]x1, where [(1−m)Ns]/[(1−m)Ns +mNeq]
is the probability of sampling an individual of philopatric origin in the focal group after dispersal. Note
that x1 does not depend on demographic states because any class of individuals from other groups
have zero relatedness to the focal individual so that their average phenotypes can be considered to be
equivalent when viewed from the focal group and taken to be equal to x1. In order to take simultaneously
into account the case where warfare occurs before and after the dispersal of subadults (e.g. eq. 3 of the
main text), I write the average phenotypes of subadults in the focal group as

xA0 (s) =
(1−mε)Ns

(1−mε)Ns +mεNeq
xR0 +

mεNeq

(1−mε)Ns +mεNeq
x1

yA0 (s) =
(1−mε)Ns

(1−mε)Ns +mεNeq
yR0 +

mεNeq

(1−mε)Ns +mεNeq
y1, (B-13)

where the parameter ε is set to zero when warfare occurs before the dispersal of offspring and set to one
if it occurs after the dispersal of offspring.
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With probability φ0(s) ≡ φ(xA0 (s), x1) the subadults in a focal group, which was in demographic state
s in the parental generation, enter into a fight with another group by attacking. The focal group is
assumed to win the ensuing battle with probability

v0(s) =
∑
s∗

Pr(s∗)
ωg
(
yA0 (s)Ns

)
ωg
(
yA0 (s)Ns

)
+ (1− ω)g(y1Ns∗)

, (B-14)

which is an average over all possible contests faced by the individuals in the focal group at steady-state.
This equation is the direct extension of eq. 5 of the main text to the case where opposing groups vary
in size, and is then averaged over the distribution Pr(s∗) of demographic states of the attacked group
evaluated in the neutral process. Taking such an average can be justified by the fact that owing to
the infinite island model assumptions, groups affect each other in a nonstochastic manner, only through
limiting densities, which can be taken as those of the focal deme itself [1, 4].

With probability φ1 ≡ φ(x1, x1) a focal group in demographic state s is attacked by another group
from the population, in which case the probability that the attacking group wins the ensuing battle is

v1(s) =
∑
s∗

Pr(s∗)
ωg(y1Ns∗)

(1− ω)g
(
yA0 (s)Ns

)
+ ωg(y1Ns∗)

, (B-15)

which is an average over all demographic states of the attacker group.
With these notations, the forward transition probabilities, from a focal group in demographic state s

in the parental generation to any of the four other states in the offspring generation are given by

Pr(s1 | s) = [1− φ1v1(s)]φ0(s)v0(s)

Pr(s2 | s) = φ1v1(s)φ0(s)v0(s)

Pr(s3 | s) = [1− φ1v1(s)][1− φ0(s)v0(s)]

Pr(s4 | s) = φ1v1(s)[1− φ0(s)v0(s)]. (B-16)

The stationary distribution (eq. B-4) induced by this Markov chain is difficult to analyze because the
transition probabilities themselves depend on the stationary distribution (e.g., eq. B-14) so that the
stationary distribution it is only implicitly determined and cannot be evaluated by using linear algebra.
This is a non-homogeneous Markov chain that is homogeneous only asymptotically.

Selection: effect on settled offspring number Sf

The frequency functions (eq. B-9 and eq. B-10) describe a model of local group size fluctuations with
Wright-Fisher reproduction [1,2]. For this case, it has been shown that the first component of the selection
gradient on a phenotype z, Sf , can be simplified and expressed solely in terms of the perturbations of the
relative fecundity of a focal individual (number of juveniles produced before a competition stage) as

Sf =
∑
s

1

b

(
∂b•
∂z•

+
∂b•
∂zR0

1

Ns

)
ν(s) (1−R(s)) Pr(s) (B-17)

[2, eq. 21 of the Appendix].
In the present model, we further have ∂b•/∂z

R
0 = 0, whereby

Sf =
1

b

∂b•
∂z•

∑
s

ν(s) (1−R(s)) Pr(s), (B-18)

which can be used to evaluate both the selection gradient on belligerence and bravery by using b• =
[1− Cx(x•)] [1− Cy(y•)].
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Selection: effect on offspring reproductive value SPr

Belligerence

Using eq. B-13 to describe the phenotype of subadult individuals and holding bravery constant (yR0 =
y1 = y), the perturbations of the transition probabilities (eq. B-16) due to expressing belligerence and
evaluated at the neutrality point (xR0 = x1 = x) are given by

Pr(s1 | s)
∂xR0

=
∂φ0(s)

∂xR0
v0(s) [(1− φv1(s)]

Pr(s2 | s)
∂xR0

=
∂φ0(s)

∂xR0
v0(s)φv1(s)

Pr(s3 | s)
∂xR0

= −Pr(s1 | s)
∂xR0

Pr(s4 | s)
∂xR0

= −Pr(s2 | s)
∂xR0

. (B-19)

Substituting these expressions into eq. B-3 and rearranging produces

SPr =
∑
s

fp(s)RR(s) Pr (s)

× ∂φ0(s)

∂xR0
v0(s)

[
{1− φv1(s)}{ν(s1)− ν(s3)}+ φv1(s){ν(s2)− ν(s4)}

]
. (B-20)

Bravery

Using eq. B-13 in eq. B-16 and holding belligerence constant, the perturbations of the transition proba-
bilities evaluated at the neutrality point can be written as

Pr(s1 | s)
∂yR0

= φ

[
{1− φv1(s)}∂v0(s)

∂yR0
− φv0(s)

∂v1(s)

∂yR0

]
Pr(s2 | s)
∂yR0

= φ2
[
v1(s)

∂v0(s)

∂yR0
+ v0(s)

∂v1(s)

∂yR0

]
Pr(s3 | s)
∂yR0

= −Pr(s1 | s)
∂yR0

− φ∂v1(s)

∂yR0
Pr(s4 | s)
∂yR0

= −Pr(s2 | s)
∂yR0

+ φ
∂v1(s)

∂yR0
. (B-21)

Substituting these expressions into eq. B-3 and rearranging produces

SPr =
∑
s

fp(s)RR(s) Pr (s)
[
{ν(s1)− ν(s3)}Pr(s1 | s)

∂yR0

+{ν(s2)− ν(s4)}Pr(s2 | s)
∂yR0

+ {ν(s4)− ν(s3)}φ∂v1(s)

∂yR0

]
. (B-22)

Approximate functionals

Stationary distribution

By using eq. B-16, I was unable to obtain analytical expression for the stationary demographic distribution
Pr(s) under neutrality, which we need in order to evaluate eq. B-2 and eq. B-3. Without an analytical
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expression of the stationary distribution there is no hope to evaluate explicitly the selection gradients on
belligerence and bravery.

However, numerical exploration of the stationary distribution suggests that it is weakly affected by
the parameter h when h > 0.5 and that the probabilities of occurrences of the demographic states take
values very close to that if h were equal to one in that case. An approximation for the Markov chain
described by eq. B-16 for large h values can then be obtained by carrying out a first order Taylor expansion
around h = 1 of the transition probabilities given by eq. B-16, which was done with Mathematica [3].
Substituting the resulting transition probabilities into eq. B-4 and solving for the stationary distribution
gives

Pr(s1) = (1− φω)φω +O
(
(1− h)2

)
Pr(s2) = φ2ω2 +O

(
(1− h)2

)
Pr(s3) = (1− φω)2 +O

(
(1− h)2

)
Pr(s4) = φω(1− φω) +O

(
(1− h)2

)
, (B-23)

where O
(
(1− h)2

)
is a remainder of order (1−h)2. In the rest of this Appendix, I evaluate the components

of the selection gradients on belligerence and bravery to the first order in 1− h so that eq. B-23 can be
used in order to evaluate eq. B-2 and eq. B-3 to the first order in h around h = 1.

Winning and fighting probabilities

A first order Taylor expansion of the fighting probability around h = 1 gives

∂φ0(s)

∂xR0
=

∂φ0(s)

∂xA0 (s)

∂xA0 (s)

∂xR0
= (1− εm)φ′ +O (1− h) , (B-24)

where φ′ ≡ ∂φ0(s)/∂xA0 (s).
Substituting eq. B-23 into eqs. B-14–B-15 gives

∂v0(s)

∂yR0
=

∂v0(s)

∂yA0 (s)

∂yA0 (s)

∂yR0
= (1− εm)v′ +O (1− h) , (B-25)

where v′ ≡ Nω(1− ω)g′/g, and

∂v1(s)

∂yR0
=

∂v1(s)

∂yA0 (s)

∂yA0 (s)

∂yR0
= −(1− εm)v′ +O (1− h) . (B-26)

In a monormorphic population we also have

v0(s) = ω +O (1− h)

v1(s) = ω +O (1− h) . (B-27)
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With these results, eq. B-21 reduces to

Pr(s1 | s)
∂yR0

= φv′(1− εm) +O (1− h)

Pr(s2 | s)
∂yR0

= O (1− h)

Pr(s3 | s)
∂yR0

= O (1− h)

Pr(s4 | s)
∂yR0

= −φv′(1− εm) +O (1− h) . (B-28)

Reproductive values

Substituting eqs. B-9–B-10, eq. B-16, and eq. B-23 into eq. B-5 and solving for the reproductive values
provides the following first order Taylor expansion around h = 1 at neutrality:

ν(s1) = 1 + (1− h)
(
1− (1−m)2

)
+O

(
(1− h)2

)
ν(s2) = 1 +O

(
(1− h)2

)
ν(s3) = 1 +O

(
(1− h)2

)
ν(s4) = 1− (1− h)

(
1− (1−m)2

)
+O

(
(1− h)2

)
, (B-29)

which gives

ν(s1)− ν(s3) = (1− h)
(
1− (1−m)2

)
+O

(
(1− h)2

)
ν(s2)− ν(s4) = (1− h)

(
1− (1−m)2

)
+O

(
(1− h)2

)
ν(s4)− ν(s3) = −(1− h)

(
1− (1−m)2

)
+O

(
(1− h)2

)
. (B-30)

These expressions are needed to evaluate the selection pressure SPr for both belligerence and bravery
(eq. B-20 and eq. B-22). Eq. B-30 illustrates that the changes in reproductive value involve terms of
order (1− h). Hence, in order to evaluate SPr to the first order around h = 1, it is sufficient to evaluate
all other functionals (fp(s), RR(s), Pr (s), etc.) to the zero’s order as any term of order (1− h) in these
functionals would result in second order terms in the selection gradient.

Probabilities of identity by descent

Substituting eq. B-10, eq. B-16, and eq. B-23 into eq. B-8 and solving for relatedness provides the following
first order Taylor expansions

R(s) =
(1−m)2

N − (N − 1)(1−m)2
+O

(
(1− h)2

)
(B-31)

and

Rp ≡
∑
s

fp(s)RR(s) Pr(s)

=
(1−m)

N − (N − 1)(1−m)2
+O

(
(1− h)2

)
. (B-32)
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Approximate selection gradient

We now have all the elements to evaluate the selection gradients on belligerence and bravery to the first
order around h = 1.

Selection on belligerence

Holding bravery constant and using belligerence as the evolving trait, eq. B-18 reduces to

Sf = − C ′x
1− Cx

(1−R) +O
(

(1− h)2
)
, (B-33)

because
∑

s ν(s) Pr(s) = 1 and R(s) is the same for all s (see eq. B-31) and is denoted R.
Substituting eq. B-30, eq. B-24, and eq. B-27 into eq. B-20 gives

SPr =
∑
s

fp(s)RR(s) Pr (s)

× (1− εm)φ′ω
[
(1− φω) (1− h)

(
1− (1−m)2

)
+ φω(1− h)

(
1− (1−m)2

)]
, (B-34)

which can be simplified to

SPr = φ′ω(1− h)
(
1− (1−m)2

)
(1− εm)Rp +O

(
(1− h)2

)
(B-35)

by using eq. B-32. The coefficient Rp is the average probability of identity between a gene sampled in a
philopatric individual (individual that has not dispersed) and a homologous gene sampled in a neighbour.

Adding up Sf and SPr, and taking into account only first order terms, one obtains the inclusive fitness
effect from expressing belligerence as

S = − C ′x
1− Cx

(1−R) + φ′ω(1− h)
(
1− (1−m)2

)
(1− εm)Rp. (B-36)

Setting the selective pressure to zero and neglecting terms of order (1− h)2 and of higher order, the
cost-to-benefit ratio under which belligerence spreads can be written as

C ′x
1− Cx

=
φ′ω(1− h)

(
1− (1−m)2

)
(1− εm)Rp

1−R
, (B-37)

where using eqs. B-31–B-32 produces

Rp

1−R
=

(1−m)

(1− (1−m)2)N
. (B-38)

Selection on bravery

Following similar calculations as in the last section, we have from eq. B-18 for bravery that

Sf = −
C ′y

1− Cy
(1−R). (B-39)

Using eq. B-30 and eqs. B-26–B-28 in eq. B-20, and holding belligerence constant produces

SPr =
∑
s

fp(s)RR(s) Pr (s)
[
(1− h)

(
1− (1−m)2

)
φ(1− εm)v′

+(1− h)
(
1− (1−m)2

)
φ(1− εm)v′

]
+O

(
(1− h)2

)
, (B-40)
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whereby

SPr = φv′2(1− h)
(
1− (1−m)2

)
(1− εm)Rp +O

(
(1− h)2

)
. (B-41)

Adding up the selective pressures one obtains

S = −
C ′y

1− Cy
(1−R) + v′2(1− h)

(
1− (1−m)2

)
(1− εm)Rp +O

(
(1− h)2

)
. (B-42)

Using eq. B-38, eq. B-39, and eq. B-42 in this selection gradient, neglecting the remainder, and setting
S = 0 finally gives

C ′y
1− Cy

=
φv′2(1− h)(1− εm)(1−m)

N
. (B-43)
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