
Data analysis for the paper "An Extensive Mitochondrial Bottleneck Occurs During Oogenesis in a Non-Mammalian
Vertebrate" by Jonci N Wolff, Daniel J
White, Michael Woodhams, Helen E White and Neil J Gemmell.

The data analysis has been done in Mathematica. As this is an expensive commercial package, many will not have
access to it or be familiar with it. I have assumed the reader is familiar with several computer programming lan-
guages, and I give additional explainations where such experience does not suffice to understand Mathematica's
syntax. (Mathematica can be used like a procedural language, but it is more friendly to being used in functional and
logical (e.g. Prolog) programming idioms.)

Predefine some variables to avoid warning messages when variable names are similar:

In[1]:= OffGeneral::spell, General::spell1;
rawData, mData, meData, eData, fData, mfData, efData, normal, norm,
PDFmData, PDFeData, PDFfData, PDFmeData, PDFmfData, LogPDFmData,
LogPDFmeData, LogPDFmfData, LogPDFefData, LogPDFeData, LogPDFfData,
LogPDFtmData, PDFtmData, LogPDFtmeData, PDFtmeData, LogPDFtmfData,
PDFtmfData, tmData, mean, median, mode, var, varM, varC, vard, nMin, nMax,
grid, logInterp3Dtmef, logInterp3Dtme, logInterp3Dtmf, interp1Dtmef,
interp1Dtme, interp1Dtmf, logInterp3Dme, interp1Dme, logInterp3Dmf,
interp1Dmf, mean, meanM, meanC, tmeData, tmfData, xMin, xMax, yMin, yMax;

OnGeneral::spell, General::spell1;

Turn off some numerical warnings which will otherwise be obtrusive:

In[4]:= OffNIntegrate::ncvb, NIntegrate::slwcon;

This is the raw data. Each individual has a list of its name followed by its heteroplasmy measurements in parts-per-
thousand. Each family is a list of individual lists, with the mother coming first. The whole stricture is a list of families.

In[5]:= rawData
"m214", 634, 654, 637, 627, 632, 616, 630, 638, 645, 639, 616, 636, 630, "e1",

"e2", "e3", 597, "e4", 630, "e5", 654, "e6", 597, "e7", 578, 611,
"e8", 690, "e9", 500, "e10", 608, 597, 589, "e11", 574, 571, 578,
"e12", 669, 637, 654, "e13", 667, 653, 636, "e14", 770, 758, 772,
"e15", 638, 628, 605, "e16", 680, 648, 649, "e17", 627, 641, 625,
"e18", 566, 564, 563, "e19", 638, 624, 616, "e20", 666, 664, 674,
"e21", 651, 629, 615, "e22", 686, 660, 685, "e23", 686, 670, 656,
"e24", 710, 679, 700, "e25", 656, 656, 640, "e26", 725, 704, 708,
"e27", 621, 633, 631, "e28", 672, 653, 649, "e29", 647, 649, 633,
"e30", 634, 612, 621, "f1 ", 634, 654, 637, "f2 ", 649, "f3 ", 736,
"f4 ", 736, 744, 752, "f5 ", 749, "f6 ", 640, "f7 ", 628, 635, 641,
"f8 ", 618, "f9 ", 597, "f10 ", 640, "f11", 606, "f12", 654, 668, 642,
"f13", 600, 585, 576, "f14", 609, 610, 588, "f15", 690, 684, 690,
"f16", 637, 641, 639, "f17", 717, "f18", 485, "f19", 692, "f20", 703,

"m256", 330, 318, 326, 333, 339, 302, 338, 315, 316, 333, 308, 341, 310,
"e1", "e2", 374, "e3", "e4", "e5", "e6", "e7", "e8", 357, 323,
"e9", 329, "e10", "e11", 332, "e12", 394, "e13", 337,
"e14", 409, "e15", 434, "e16", 401, "e17", 395, "e18", 341,
"e19", 358, "e20", 461, "e21", 274, "e22", 340, "e23", 363,
"e24", 408, "e25", 397, "e26", 340, "e27", 395, "e28", 339,
"e29", 383, "e30", 441, "f1 ", 397, 399, 404, "f2 ", 287,
"f3 ", 332, "f4 ", 313, 297, 344, "f5 ", 334, "f6 ", 333,

mitochondrial_bottleneck.nb 1

"f7 ", 338, "f8 ", 311, "f9 ", 329, 344, 327, "f10 ", 413,
"f11", 430, "f12", 353, "f13", 445, "f14", 340, "f15", 355,
"f16", 362, "f17", 428, "f18", 368, "f19", 351, "f20", 403,

"m263", 672, 670, 678, 668, 672, 695, 679, 679, 669, 683, 676, 676, 681,
"e1", 591, "e2", 696, "e3", "e4", "e5", 630, "e6", "e7",
"e8", "e9", "e10", "e11", 699, "e12", 675, "e13", 664,
"e14", 716, "e15", 659, "e16", 643, "e17", 675, "e18", 736,
"e19", 726, "e20", 676, "e21", "e22", "e23", "e24",
"e25", "e26", "e27", "e28", "e29", "e30", "f1 ", 765,
"f2 ", 698, 697, 700, "f3 ", 648, "f4 ", 695, "f5 ", 669, "f6 ", 729,
"f7 ", 652, 637, 658, "f8 ", 694, "f9 ", 642, "f10 ", 708, 681, 702,
"f11", 731, "f12", 720, "f13", 660, "f14", 724, "f15", 712,
"f16", 763, "f17", 658, "f18", 722, "f19", 685, "f20", 714,

"m272", 246, 237, 259, 200, 199, 194, 196, 210, 179, 156, 192, 169,
"e1", 323, "e2", 283, 253, 255, "e3", 222, "e4", 228,
"e5", 236, "e6", 199, "e7", 273, 258, 240, "e8", 155, "e9", 182,
"e10", 197, 147, 171, "e11", 239, "e12", 150, "e13", 151,
"e14", 203, "e15", 228, "e16", 175, "e17", 208, "e18", 236,
"e19", 183, "e20", 169, "e21", "e22", "e23", "e24", "e25",
"e26", "e27", "e28", "e29", "e30", "f1 ", 246, 237, 259,
"f2 ", 276, "f3 ", 273, "f4 ", 226, 220, 234, "f5 ", 190, "f6 ", 152,
"f7 ", 181, 188, 189, "f8 ", 243, "f9 ", 173, "f10 ", 254,
"f11", 154, "f12", 166, "f13", 144, "f14", 149, "f15", 180,
"f16", 242, "f17", 152, "f18", 201, "f19", 212, "f20", 139,

"m357", 303, 316, 292, 254, 298, 268, 283, 294, 243, 256, "e1", 300,
"e2", 263, "e3", 343, "e4", "e5", 340, 314, 345, "e6", "e7", 284,
"e8", 325, 259, 239, "e9", "e10", 236, "e11", 254, "e12", 277,
"e13", 343, "e14", 153, "e15", 240, "e16", 211, "e17", 216,
"e18", 224, "e19", 310, "e20", 214, "e21", "e22", "e23", "e24",
"e25", "e26", "e27", "e28", "e29", "e30", "f1 ", 248, 279, 278,
"f2 ", 408, "f3 ", 278, "f4 ", 288, 269, 278, "f5 ", 310, "f6 ", 334,
"f7 ", 275, "f8 ", 369, "f9 ", 330, 296, 303, "f10 ", 267,
"f11", 339, "f12", 294, "f13", 288, "f14", 270, "f15", 294,
"f16", 347, "f17", 359, "f18", 357, "f19", 278, "f20", 389;

Now we strip of the names to leave just numbers in 'data', convert parts-per-thousand to a fraction, and make some
subsets: mData is mothers only, eData eggs only, fData fry only, meData mothers and eggs, mfData mothers and fry.

In[6]:= data MapRest, rawData, 2 1000.;
mData dataAll, 1;
eData dataAll, Range2, 31;
fData dataAll, Range32, 51;
meData dataAll, Range31;
mfData dataAll, Join1, Range32, 51;

For example, here's the data for family 1, mother and eggs:

mitochondrial_bottleneck.nb 2

In[12]:= meData1

Out[12]= 0.634, 0.654, 0.637, 0.627, 0.632, 0.616, 0.63, 0.638, 0.645, 0.639, 0.616, 0.636,
0.63, , , 0.597, 0.63, 0.654, 0.597, 0.578, 0.611, 0.69,

0.5, 0.608, 0.597, 0.589, 0.574, 0.571, 0.578, 0.669, 0.637, 0.654,
0.667, 0.653, 0.636, 0.77, 0.758, 0.772, 0.638, 0.628, 0.605,
0.68, 0.648, 0.649, 0.627, 0.641, 0.625, 0.566, 0.564, 0.563,
0.638, 0.624, 0.616, 0.666, 0.664, 0.674, 0.651, 0.629, 0.615,
0.686, 0.66, 0.685, 0.686, 0.67, 0.656, 0.71, 0.679, 0.7,
0.656, 0.656, 0.64, 0.725, 0.704, 0.708, 0.621, 0.633, 0.631,
0.672, 0.653, 0.649, 0.647, 0.649, 0.633, 0.634, 0.612, 0.621

This is the Gaussian/Normal distribution function

In[13]:= normalx_, _, var_ : 1 Sqrtvar 2 Pi Expx ^2 2var;

Now calculate the likelihood of a given measurement error. It is possible to do the following analytically, but just
throwing numerical integrations at the problem is simpler to understand.

'likelihood' is the likelihood of the data (a list of numbers) for the given and . (We apply the 'normal' function to
each element of 'data', then multiply the results.

In[14]:= likelihood_, _, data_List : Times Mapnormal#, , ^2 &, data;

This function finds the log likelihood for a value of given a list of measurements from a single individual. We
eliminate by integrating over it. (In principle we integrate from - to +, but I omit the range where the function is
known to be very small.)

In[15]:= logLikelihood1_, data_List : IfLengthdata 2, 0, Log
NIntegratelikelihood, , data, , Mindata 5 , Maxdata 5 ;

Now 'array' is a list of lists (data from a single family), and each list (data from an individual) has the same measure-
ment error but they all have different unknown means. The log likelihood of is just sum of the log likelihoods for
each individual:

In[16]:= logLikelihood2_, array_List : Plus MaplogLikelihood1, # &, array;

Finally logLikelihood3 takes a list of data from all families and applies logLikelihood2 to each family and adds the
results.

In[17]:= logLikelihood3_, array_List : Plus MaplogLikelihood2, # &, array;

As an illustration, here is a plot of the log likelihood if we combine all the data (i.e. assume all measurements have
the same error):

mitochondrial_bottleneck.nb 3

In[18]:= PlotlogLikelihood3, data, , 0.01, 0.05;

0.02 0.03 0.04 0.05

300

320

340

360

This is a bit slow to calculate, as it requires integration, so we evaluate it on some grid points and create an interpolat-
ing function over those grid points to save time.

This procedure takes an input function and returns two approximating functions: one approximates the input function,
the other is the exponential of the input function normalized to integate to one. (I.e. if the input function is a log
likelihood, the second approximating function is the corresponding posterior probability, assuming a flat prior.)

In[19]:= interpolationFromLogLikelihoodf_, min_, max_ : Module
data, logInterp, norm, dataMax,
data Tablex, fx, x, min, max, max min 50;
logInterp Interpolationdata;
 Scale data to avoid overunderflow
dataMax MaxdataAll, 2;
norm NIntegrateExplogInterpx dataMax, x, min, max;
linInterp InterpolationMap#1, Exp#2 dataMax norm &, data;
ReturnlogInterp, linInterp;
;

And we create interpolating functions for our various subsets of the data. (This takes a few seconds to calculate. The
warning message is not significant.)

In[20]:= min 0.005; max 0.035;
LogPDFallData, PDFallData

interpolationFromLogLikelihoodlogLikelihood3#, data &, min, max;
LogPDFmData, PDFmData interpolationFromLogLikelihood

logLikelihood3#, mData &, min, max;
LogPDFeData, PDFeData interpolationFromLogLikelihood

logLikelihood3#, eData &, min, max;
LogPDFfData, PDFfData interpolationFromLogLikelihood

logLikelihood3#, fData &, min, max;
LogPDFmeData, PDFmeData interpolationFromLogLikelihood

logLikelihood3#, meData &, min, max;
LogPDFmfData, PDFmfData interpolationFromLogLikelihood

logLikelihood3#, mfData &, min, max;

For example, for all the data lumped together:

In[27]:= PlotLogPDFallDatax, x, 0.005, 0.035;
PlotPDFallDatax, x, 0.005, 0.035, PlotRange All;

mitochondrial_bottleneck.nb 4

0.005 0.01 0.015 0.02 0.025 0.03 0.035

260

280

300

320

340

360

0.005 0.015 0.02 0.025 0.03 0.035

100

200

300

400

Now we can see whether the measurement errors for the different types of sample are the same:

mitochondrial_bottleneck.nb 5

In[29]:= graph PlotPDFmData, PDFeData, PDFfData, , min, max,
PlotRange 0, max, All, Axes True, False, AxesLabel "P", None;

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035
P

and we see that they are not (Peaks are fry, eggs, mothers from left to right.)

This function finds mean, median, mode, 95% confidence intervals on a probability density function. (Confidence
interval is from 2.5th percentile to 97.5th percentile.)

In[30]:= statsf_, min_, max_ : Moduleanswer, x, ,
OffNIntegrate::nlim,
NIntegrate::slwcon, NIntegrate::ncvb, FindMaximum::lstol;

 NIntegratex fx, x, min, max;
answer mean ,

FindRootNIntegratefx, x, min, median 0.5, median, , min, max,
FindMaximumfmode, mode, , min, max2,
FindRootNIntegratefx, x, min, lower 0.025, lower, , min, max,
FindRootNIntegratefx, x, min, upper 1 0.025, upper, , min, max

;
OnNIntegrate::nlim,
NIntegrate::slwcon, NIntegrate::ncvb, FindMaximum::lstol;

answer
;

statsf_InterpolatingFunction : statsf, f1, 1, 1, f1, 1, 2;

And here are those distribution statistics for mothers, eggs and fry:

mitochondrial_bottleneck.nb 6

In[32]:= statsPDFmData
statsPDFeData
statsPDFfData

Out[32]= mean 0.019152, median 0.0190061,
mode 0.0187362, lower 0.0159259, upper 0.0232228

Out[33]= mean 0.0166863, median 0.0165551,
mode 0.0163152, lower 0.0138276, upper 0.0203106

Out[34]= mean 0.0118028, median 0.0116785,
mode 0.0114515, lower 0.00948202, upper 0.0148732

Now we can move on to estimating N, the bottleneck genome number. (I use 'n' instead of 'N' here as 'N' means
something to Mathematica.

Notation:
n = bottleneck genome number
m = the mother's actual heteroplasmy ratio
c = the child's actual heteroplasmy ratio
M = mother's measured heteroplasmy ratio (including measurement error)
C = child's measured heteroplasmy ratio
M = measurement error in mother
C = measurement error in child
d

2 = 'drift variance' = Em c^2 , measuring the expected intergenerational change in heteroplasmy ratio
2 = 'total variance' = EM C^2 , measuring the expected intergenerational change in measured heteroplasmy
ratio
 2 = estimate of total variance (etc.)

By our model, the child's number of mutant genomes will be drawn from a binomial distribution of size n . From the
binomial distribution, the drift variance is d

2 m1m n , and except for small n , we can take it to be a normal
distribution. Similarly, we assume measurement errors are normally distributed, with zero mean. Given mother and
child measurement variances M

2 and C
2 , the difference between mother and child measurement is distributed with

mean of zero and variance 2 M
2 C

2 d
2 (assuming independence between the measurement errors and the

drift in genome number) . Hence we can calculate a likelihood of a M , C measurement pair for a given n if we know
(or assume) values for M

2 and C
2 .

This comes from equation 3 in the paper. <Check that equation number has not changed.> It takes the measurements
from one mother and the measurements from one child (egg or fry).

In[35]:= logLikelihoodDiffn_, errM_, errC_, Mlist_List, Clist_List :
ModulemeanM, meanC, vard, varM, varC,
IfLengthClist 0 LengthMlist 0,
Return0,
meanM MeanMlist;
meanC MeanClist;
vard meanM 1 meanM n;
varM errM^2 LengthMlist;
varC errC^2 LengthClist;
ReturnLognormalmeanM meanC, 0, varM varC vard

;

mitochondrial_bottleneck.nb 7

This function adds up the log likelihoods for all children in a single family:

In[36]:= logLikelihoodFamilyn_, errM_, errC_, familyData_ :
Plus TablelogLikelihoodDiffn, errM, errC, familyData1, familyDatai,
i, 2, LengthfamilyData;

And this one adds the log likelihoods for each family:

In[37]:= logLikelihoodn_, errM_, errC_, data_ :
Plus MaplogLikelihoodFamilyn, errM, errC, # &, data;

For example, here is a plot of the log likelihoods of n if we assume 2% measurement error for both mother and child,
and we combine both eggs and fry in a single analysis:

In[38]:= nMin 30; nMax 150;
PlotlogLikelihoodn, 0.02, 0.02, data,

n, nMin, nMax, PlotRange 0, nMax, All;

20 40 60 80 100 120 140

280

285

290

295

300

305

For comparison, see what happens if we assume 1% measurement error instead:

mitochondrial_bottleneck.nb 8

In[40]:= PlotlogLikelihoodn, 0.01, 0.01, data,
n, nMin, nMax, PlotRange 0, nMax, All;

20 40 60 80 100 120 140

280

285

290

295

300

305

Because less of the difference between mother and child measurements is attributable to measurement error, the
genetic drift must be greater hence n must be smaller - the peak shifts from about 85 to about 75.

We now want to eliminate the measurement uncertainties. We form a three dimensional grid over the plausible values
of n , M and C . At each point we evaluate the overall likelihood (likelihood of n, M , C times likelihood of M

times likelihood of C .) The likelihoods of M and C come from the interpolated functions we generated earlier.

This function returns the grid of log likelihoods:

In[41]:= logLikelihoodGridlogErrMInterp_, logErrCInterp_, data_ :
Tablen, errM, errC, logLikelihoodn, errM, errC, data logErrMInterperrM

logErrCInterperrC, n, nMin, nMax, nMax nMin 40,
errM, min, max, max min 40, errC, min, max, max min 40;

And this function creates a (3D) interpolating function using the grid points:

In[42]:= interpolateLogLikelihoodlogErrMInterp_, logErrCInterp_, data_ :
Modulegrid, peak,
grid FlattenlogLikelihoodGridlogErrMInterp, logErrCInterp, data, 2;
peak MaxgridAll, 4;
grid Map# 0, 0, 0, peak &, grid;
ReturnInterpolationgrid;

It takes about 10 minutes to calculate these. (These timings are on an Intel E7300 2.66GHz CPU, a recent mid-range
processor.)
This is for the mother-plus-eggs data:

In[43]:= Timing
logInterp3Dme interpolateLogLikelihoodLogPDFmData, LogPDFeData, meData;

Out[43]= 461.295 Second, Null

And this is the mother-plus-fry data:

mitochondrial_bottleneck.nb 9

In[44]:= Timing
logInterp3Dmf interpolateLogLikelihoodLogPDFmData, LogPDFfData, mfData;

Out[44]= 382.233 Second, Null

And now we can integrate over the nuisance variables: (Warning messages are because the integrand is very small
over most of the range.)

In[45]:= integrateOverErrorn_, logInterp3D_ : NIntegrate
ExplogInterp3Dn, errM, errC, errM, min, max, errC, min, max;

In[46]:= PlotintegrateOverErrorn, logInterp3Dme, n, nMin, nMax, PlotRange All

NIntegrate::slwcon :

Numerical integration converging too slowly; suspect one of the following: singularity, value
of the integration being 0, oscillatory integrand, or insufficient WorkingPrecision. If your

integrand is oscillatory try using the option MethodOscillatory in NIntegrate. More…

NIntegrate::slwcon :

Numerical integration converging too slowly; suspect one of the following: singularity, value
of the integration being 0, oscillatory integrand, or insufficient WorkingPrecision. If your

integrand is oscillatory try using the option MethodOscillatory in NIntegrate. More…

NIntegrate::slwcon :

Numerical integration converging too slowly; suspect one of the following: singularity, value
of the integration being 0, oscillatory integrand, or insufficient WorkingPrecision. If your

integrand is oscillatory try using the option MethodOscillatory in NIntegrate. More…

General::stop : Further output of NIntegrate::slwcon will be suppressed during this calculation. More…

60 80 100 120 140

2.510-6

510-6

7.510-6

0.00001

0.0000125

0.000015

0.0000175

Out[46]= Graphics

That is inconveniently slow, so once again we approximate with an interpolating function. This function automates
the process, returning an interpolating function on n only, normalized to integrate to one.

In[47]:= normInterplogInterp3D_ : Modulegrid, interp, norm,
grid Tablen, integrateOverErrorn, logInterp3D,

n, nMin, nMax, nMax nMin 100;
interp Interpolationgrid;
norm NIntegrateinterpn, n, nMin, nMax;
grid grid . 1, 0, 0, 1 norm;
ReturnInterpolationgrid
;

mitochondrial_bottleneck.nb 10

In[48]:= interp1Dme normInterplogInterp3Dme;
interp1Dmf normInterplogInterp3Dmf;

NIntegrate::slwcon :

Numerical integration converging too slowly; suspect one of the following: singularity, value
of the integration being 0, oscillatory integrand, or insufficient WorkingPrecision. If your
integrand is oscillatory try using the option MethodOscillatory in NIntegrate. More…

NIntegrate::slwcon :

Numerical integration converging too slowly; suspect one of the following: singularity, value
of the integration being 0, oscillatory integrand, or insufficient WorkingPrecision. If your
integrand is oscillatory try using the option MethodOscillatory in NIntegrate. More…

NIntegrate::slwcon :

Numerical integration converging too slowly; suspect one of the following: singularity, value
of the integration being 0, oscillatory integrand, or insufficient WorkingPrecision. If your
integrand is oscillatory try using the option MethodOscillatory in NIntegrate. More…

General::stop : Further output of NIntegrate::slwcon will be suppressed during this calculation. More…

NIntegrate::ncvb : NIntegrate failed to converge to prescribed accuracy

after 13 recursive bisections in errM near errM, errC 0.0155011, 0.018125. More…

NIntegrate::slwcon :

Numerical integration converging too slowly; suspect one of the following: singularity, value
of the integration being 0, oscillatory integrand, or insufficient WorkingPrecision. If your

integrand is oscillatory try using the option MethodOscillatory in NIntegrate. More…

NIntegrate::slwcon :

Numerical integration converging too slowly; suspect one of the following: singularity, value
of the integration being 0, oscillatory integrand, or insufficient WorkingPrecision. If your

integrand is oscillatory try using the option MethodOscillatory in NIntegrate. More…

NIntegrate::slwcon :

Numerical integration converging too slowly; suspect one of the following: singularity, value
of the integration being 0, oscillatory integrand, or insufficient WorkingPrecision. If your
integrand is oscillatory try using the option MethodOscillatory in NIntegrate. More…

General::stop : Further output of NIntegrate::slwcon will be suppressed during this calculation. More…

Here are the two posterior distributions, plus statistics on the distributions.

mitochondrial_bottleneck.nb 11

In[50]:= Plotinterp1Dmen, interp1Dmfn, n, nMin, nMax, PlotRange All;
statsinterp1Dme
statsinterp1Dmf

60 80 100 120 140

0.005

0.01

0.015

0.02

0.025

0.03

Out[51]= mean 88.3617, median 87.4352,
mode 85.6101, lower 63.6765, upper 118.367

Out[52]= mean 80.2849, median 79.5943,
mode 78.2272, lower 58.6801, upper 105.824

The peak on the left is for the fry. The fry appear to have a lower n value than the eggs, as would be expected if there
were an additional genome number bottleneck between the egg and fry stages, but the degree of overlap between the
distributions shows us that the difference is not significant. We can also demonstrate this explicitly:

In[53]:= differencePDFdiff_, fx_InterpolatingFunction, fy_InterpolatingFunction :
WithxMin fx1, 1, 1, xMax fx1, 1, 2, yMin fy1, 1, 1,
yMax fy1, 1, 2, NIntegratefxx fyx diff,
x, MaxxMin, yMin diff, MinxMax, yMax diff

;

In[54]:= PlotdifferencePDFdiff, interp1Dme, interp1Dmf,
diff, 50, 70, PlotRange All;

-40 -20 20 40 60

0.005

0.01

0.015

0.02

And some stats on that distribution:

mitochondrial_bottleneck.nb 12

In[55]:= diffInterpN InterpolationTable
diff, differencePDFdiff, interp1Dme, interp1Dmf, diff, 50, 70, 1;

statsdiffInterpN

Out[56]= mean 8.06378, median 7.88087,
mode 7.39253, lower 27.3068, upper 45.3388

The 95% confidence interval includes a difference of zero, so we cannot conclude that the two N values differ. The
one-sided p-value is:

In[57]:= NIntegratediffInterpNn, n, 50, 0

Out[57]= 0.331326

We can also apply this methodology to the distributions. In particular, are the measurement errors for fry and eggs
significantly different?

mitochondrial_bottleneck.nb 13

In[58]:= diffInterp

InterpolationTablediff, differencePDFdiff, PDFeData, PDFfData,
diff, 0.005, 0.015, 0.0002;

PlotdiffInterpd, d, 0.005, 0.015;
statsdiffInterp

NIntegrate::slwcon :

Numerical integration converging too slowly; suspect one of the following: singularity, value
of the integration being 0, oscillatory integrand, or insufficient WorkingPrecision. If your

integrand is oscillatory try using the option MethodOscillatory in NIntegrate. More…

NIntegrate::ncvb : NIntegrate failed to converge to prescribed

accuracy after 7 recursive bisections in x near x 0.011542968750000002 .̀ More…

NIntegrate::slwcon :

Numerical integration converging too slowly; suspect one of the following: singularity, value
of the integration being 0, oscillatory integrand, or insufficient WorkingPrecision. If your
integrand is oscillatory try using the option MethodOscillatory in NIntegrate. More…

NIntegrate::ncvb : NIntegrate failed to converge to prescribed
accuracy after 7 recursive bisections in x near x 0.0115953125 .̀ More…

NIntegrate::ncvb : NIntegrate failed to converge to prescribed
accuracy after 7 recursive bisections in x near x 0.01422734375 .̀ More…

General::stop : Further output of NIntegrate::ncvb will be suppressed during this calculation. More…

NIntegrate::slwcon :

Numerical integration converging too slowly; suspect one of the following: singularity, value
of the integration being 0, oscillatory integrand, or insufficient WorkingPrecision. If your

integrand is oscillatory try using the option MethodOscillatory in NIntegrate. More…

General::stop : Further output of NIntegrate::slwcon will be suppressed during this calculation. More…

-0.005 0.005 0.01 0.015

50

100

150

Out[60]= mean 0.00487955, median 0.00485638,
mode 0.00480236, lower 0.000700765, upper 0.00922606

Zero is not in the confidence interval, so we can reject the hypothesis that the measurement errors are the same. The
one-sided p-value is

In[61]:= NIntegratediffInterpd, d, 0.005, 0

Out[61]= 0.0117152

xx
This saves the state of Mathematica, so you can avoid waiting 20 minutes while it recalculates. You can restore the
state with the command
 "fish_mitochondria_analysis.mx"

In[62]:= DumpSave"fish_mitchondria_analysis.mx";

mitochondrial_bottleneck.nb 14

