
Text S1: A biophysical model of cell adhesion mediated by

immunoadhesin drugs and antibodies

Full model

The full set of equilibrium relations among the molecular complexes considered in our model is given by
Eq. S1 through S18, which express all complex concentrations as functions of e, r, i, and iin:

ein = σEe, (S1)

rin = σRr, (S2)

e1 = 2KELe, (S3)

e2 = Kxe1e/2, (S4)

e1in = 2KELein, (S5)

e2in = Kxe1inein/2, (S6)

b10 = Kb10e1inrin, (S7)

b20 = Kb20e2inrin, (S8)

r1 = KRLr, (S9)

r1in = KRLrin, (S10)

i1 = 2KILi, (S11)

i1in = 2KILiin, (S12)

h = KHEe1i, (S13)

hin = KHEe1iniin, (S14)

b01 = Kb01i1inrin, (S15)

b11 = KFHhinrin, (S16)

rG = KGGr, and

rGin = KGGrin.

(S17)

(S18)

Note that the above equations do not involve any of the underscored equilibrium constants indicated in
Fig. 1. This is because enforcing detailed balance around all loops in the reaction diagram introduces six
constraints on the equilibrium constants, which we use to eliminate the underlined constants:

KxKb20 = KxKb10, (S19)

KEKb10 = KEKR, (S20)

Kb10KFE = KFHKHE , (S21)

KIKb01 = KIKR, (S22)

KEKHE = KIKHI , and (S23)

KIKb01KFI = KFHKHEKE . (S24)

1



Requirements for adhesion

For the model with all receptors mobile (η = 0), no receptor depletion on the bilayer (α = 0), and no non-
specific adhesion (Anon = 0), we can find equations for the bounds on ligand concentration L and epitope
density eT for adhesion by setting δ = 0 in Eq. 6, 13, and 16. We can also avoid direct integration when
calculating the average adhered area.

As described in the main text, to find the minimal epitope density eTmin for adhesion, we plug δ = 0
into our model equations. For the case of α = η = Anon = 0, plugging in our expressions for equilibrium
species concentrations yields a system of three equations for the unknowns e, r, and L. For fixed L, these
three equations can be reduced to a single quadratic equation:

ae e
2
T + be eT + ce = 0, (S25)

where the coefficients are given by:

ae = K ′b2
2
KEKxLr

2
T , (S26)

be = 2KELrT
[
− 4K ′b1

2
KELrT +K ′b1K

′
b2rT (1 + 2KEL)

− 2K ′b2Kxβ(1 +KRL+KGG)
]
, and (S27)

ce = β(1 +KRL+KGG)
{

4KEL
[
K ′b1(rT + 2KELrT )

+ βKx(1 +KRL+KGG)
]
−K ′b2rT (1 + 2KEL)2

}
, (S28)

with K ′b1 ≡ σRσEKb1 and K ′b2 ≡ σRσ
2
EKb2. Eq. S25 has two solutions, the larger of which is eTmin. For

fixed epitope concentration eT , the system reduces to a single cubic equation:

aL L
3 + bL L

2 + cL L+ dL = 0, (S29)

where the coefficients are given by:

aL = 4βKEKR(2rTK
′
b1KE − rTK ′b2KE + βKRKx), (S30)

bL = −4KE

{
βrT

[
K ′b2(KE +KR)−K ′b1rT (2KE +KR)

− 2KRKxβ
]

+ eT rT (2K ′b1
2
KErT

−K ′b1K ′b2KErT +K ′b2KRKxβ)
}
, (S31)

cL = 2rTK
′
b1KE(2β + eT rTK

′
b2) + 4β2KEKx

+ e2T r
2
TK
′
b2

2
KEKx

− rTβK ′b2 [KR + 4KE(1 +KxeT )] , and (S32)

dL = −rTβK ′b2. (S33)

Eq. S29 has either two positive solutions, which are L− and L+, or no positive solutions, in which case
adhesion is not possible for any ligand concentration.

When α = η = Anon = 0, then we do not need to explicitly integrate over f(eT ), because

〈δ〉 = δ(〈eT 〉), (S34)

where 〈eT 〉 is the average epitope density of adhered cells:

〈eT 〉 =

∫∞
eTmin

eT f(eT ) deT∫∞
eTmin

f(eT ) deT
. (S35)

To prove this, we first note the constraint imposed by our relation for the bond density (Eq.16) when
α = η = Anon = 0. In this case, after substituting our equilibrium relations, β is equal to a function of e and
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r which does not involve eT . When α = 0, r is simply rT /(1 +KRL) (from Eq. 13), again not involving eT .
Thus, our relation for the bond density provides a constraint on the free epitope density e that is independent
of the total epitope density eT . In other words, all adhered cells will have the same density of free epitopes
and thus of all other complexes, irrespective of their total epitope density eT .

When α = η = 0, our conservation equation for mobile epitopes (Eq. 6) yields the following expression
for δ:

δ =
eT − (e+ e1 + 2e2)

b10 + 2b20 + ein + e1in + 2e2in − (e+ e1 + 2e2)
. (S36)

Note that all complex concentrations on the right-hand side (e, e1, e2, b10, b20, ein, e1in, and e2in) are
functions of e and r only, which we have just shown are independent of eT . Thus, taking the average over
adhered cells, we have

〈δ〉 =
〈eT 〉 − (e+ e1 + 2e2)

b10 + 2b20 + ein + e1in + 2e2in − (e+ e1 + 2e2)
, (S37)

where the right-hand side is simply the specific contact area calculated using the average epitope density of
adhered cells 〈eT 〉. Thus, to calculate 〈δ〉 we need only calculate eTmin, then 〈eT 〉, and finally 〈δ〉.
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