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2 Mapping global influenza transmission
The epidemic percolation network (EPN) is a directed random network that represents the final
outcomes of a stochastic epidemic model [1]. To generate an EPN, we imagine that every
individual in the model is infected and draw arrows from each individual i to all persons with
whom i would make infectious contact while he or she was infected. We define infectious
contact to be a contact sufficient to infect a susceptible person, so an arrow from i to j means
that infection of i implies infection of j, either by i or by someone who makes infectious contact
with j before i does. An epidemic begins with one or more persons infected from outside the
population, who we call imported infections. For a given set of imported infections and a given
realization of the EPN, the set of people who will eventually be infected is precisely the union of
the out-components of all imported infections. Since infectious contact is a stochastic process,
the EPN is a random network. It can be shown that the size distribution of outbreaks starting
with the infection of a node i is identical to the distribution of out-component sizes of i in the
probability space of EPNs. In the limit of a large population, the epidemic threshold corresponds
to the emergence of a giant strongly-connected component in the EPN, the probability of a
large epidemic given a single randomly-chosen initial infection is equal to the proportion of the
nodes contained in the giant in-component of the EPN, and the attack rate of a large epidemic
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(for any set of initial infections) is equal to the proportion of nodes contained in the giant out-
component [1, 2].

To understand the global spread of influenza in our model, we made a simplified map of
the EPN it generates. Instead of dealing directly with a realization of the EPN, we constructed
a city-to-city transmission network, where each node represents a city and there is a directed
edge from each city i to all cities to which people can travel directly from i. Each edge ij was
then assigned a weight proportional to the expected number of edges from persons in city i to
persons in city j in the EPN, assuming all cities are transmitting at the peak seasonal R0. This
results in a network with 321 nodes and 53,354 weighted edges. This network was produced in
Python 2.6 using the NetworkX package [3], available at http://networkx.lanl.gov.

Let sympr be the mean number of secondary infections generated each day by a symp-
tomatic infectious person in city i, and let pC and pA denote the proportion of children and
adults city i. Then

sympr =
1

6

[
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]
· NGmatrix

[
1

1

]
, (1)

and asympr = m×sympr, wheremi is the ratio of asymptomatic to symptomatic infectiousness.
Now let sympPij be the per-day probability that a symptomatic person in city i travels to city j,
so asympPij = sympTratio× sympPij is the per-day probability that an asymptomatic person
in city i travels to city j. Then the weight of the edge from city i to city j is

5∑
k=0

(6− k)
[
(1− psymp)× (1− asympPij)

kasympPij × asympr

+ psymp× (1− sympPij)
ksympPij × sympr

]
. (2)

Since sympr and asympr vary slightly by city, this approximates the true expected number
of edges from i to j in the probability space of city-to-city EPNs. Recall that in our simulations
we use psymp = 2

3
and m = 0.5.

2.1 Identifying transmission clusters
To simplify this map, we used an information-theoretic clustering algorithm based on using a
two-level code to describe the path of a random walker [4]. In a one-level code, each node in
the network must be given a unique name, so an efficient code will assign short code names to
frequently visited nodes and longer names to rarely visited nodes. In a two-level description,
nodes are grouped into clusters. Each cluster is assigned a unique code, and nodes within
clusters are assigned short codes that can be reused in different clusters, like city names within
states. If clusters can be assigned such that a random walker is likely to take many steps within
a cluster before leaving it, this two-level code will be shorter than the most efficient one-level
code. The clustering algorithm searches through possible partitions of the nodes into clusters to
find one that (approximately) minimizes the expected code length required to describe the path
of a random walker.
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In the random walk on the city-to-city EPN, the edge weights from city i to its neighbors
are normalized to get transition probabilities. Since the edge weights are proportional to R0,
the random walk and the resulting clusters are independent of R0. Since seasonality is imple-
mented by changing the R0 within each city, the clustering algorithm cannot capture the effects
of seasonality. To ensure that the random walk approaches a unique steady state, there is a
teleportation probability τ = 0.15 that the random walker jumps to a randomly chosen city on
each step. Cluster assignment is insensitive to τ unless it is very high [4].

The clustering algorithm was run and the map was produced using the Map Generator soft-
ware package at http://www.mapequation.org [5]. The area of each cluster is proportional
to the steady-state proportion of steps during which a random walker on the city-to-city EPN
is in it. The proportion of the cluster area contained in the border ring is equal to the steady-
state probability that a random walker inside the cluster jumps to a city in a different cluster
(excluding teleportation), and the proportion of the cluster area in the interior is equal to the
steady-state probability that a random walked in the cluster jumps to another city in the cluster
(excluding teleportation). The width of each edge is proportional to the steady-state proportion
of jumps between clusters that cross it (excluding teleportation). To make differences in area
and width easier to see, the color of the interiors and border rings of the clusters get darker as
their areas increase, and the colors of the edges get darker as their width increases. The cities
included in each cluster are shown in Table S3, where they are listed in decreasing order of flow.

Potentially, the clustering algorithm could be made sensitive to the R0 and population in
each city by allowing the teleportation probability to depend on R0 and having teleporters
choose cities with a probability proportional to their population. Improving the identification of
transmission clusters and better understanding their use in designing vaccination strategies are
important extensions of the research presented here.
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