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1 Model
Here, we describe a new global model of influenza pandemics. The model includes 321 major
cities on six continents, the airline travel among them, and influenza seasonality data when
available. This model includes more detailed within-host influenza dynamics, more detailed
influenza vaccine behavior, and more detailed seasonality data for tropical regions than other
models. Nonetheless, it is a relatively simple model that does not require specialized computing
resources to use. The model has two layers: a set of within-city models and a global model
that links them through the air transportation network and controls seasonality. Parameters are
summarized in Table S1. We first describe the within-city model.

1.1 Within-city model
1.1.1 Population, disease, and compartments

Subpopulations and risk groups Within each city, susceptibles are divided into subpopula-
tions and risk groups. Subpopulation membership is used to determine incoming and outgoing
infection probabilities. Membership in risk groups is used to determine morbidity and mortality.
At initialization, the argument propList is a list that gives the proportion of the population in
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each subpopulation, and the argument riskProps is a nested list in which the j th element of
the ith list gives the proportion of subpopulation i in risk group j. These arguments are used to
generate two arrays, propArray and popArray whose (i, j)th elements are the proportion
of the population and the number of persons, respectively, in subpopulation i and risk group j.

Natural history of infection Upon infection, each person is first assigned to become asymp-
tomatic or symptomatic. He or she is then assigned uniformly at random to one of the six viral
load trajectories shown in Figure S1. On all trajectories, infection lasts six days. At initializa-
tion, the argument psymp is the probability that an unvaccinated person becomes symptomatic.
Vaccination can reduce the probability of becoming symptomatic. The ratio of asymptomatic
infectiousness to symptomatic infectiousness is given by the argument m. In our simulations,
psymp = 2

3
and m = 0.5.

Susceptibles The population in each city is divided into susceptible (S), infected (I), and
removed (R) compartments. There are two representations of susceptible persons in the model:
S and Sdict. S is an s× r × 2 NumPy array, where s is the number of subpopulations and r
is the number of risk groups. S[i, j, k] is the number of persons in subpopulation i, risk group j,
and binary vaccination status k (0 for unvaccinated, 1 for vaccinated). The dictionary Sdict
maps each vaccination time vtimeS to an s × r NumPy array representing the number of
persons in each subpopulation/risk group combination vaccinated at time vtimeS. The array
containing unvaccinated persons is associated with the key None. Sdict is used to implement
time-dependent effects of vaccination.

Infecteds There are three representations of infected persons in the model: incI, I, and
Idict. incI is an s × r × 2 NumPy array where incI[i, j, k] is the number of person in
subpopulation i, risk group j, and binary vaccination status k who are in the first day of infec-
tion. I is a NumPy vector of length s whose ith element is the number of infected persons in
subpopulation i. The dictionary Idict maps each vaccination time vtimeI to an s×2×6×6
NumPy array whose (i, j, v, d)th element is the number of infected persons in subpopulation i
with binary symptom status j and viral load trajectory v on day d + 1 of infection who were
vaccinated at time vtimeI. The array containing unvaccinated persons has the key None and
that containing persons vaccinated ≥ 28 has the key ’Past’.

Recovereds There are two representations of recovered persons in the model: R and Rq. R is
an s× r × 2 NumPy array where R[i, j, k] is the number of recovered persons in subpopulation
i, risk group j, and binary vaccination status k. Rq is a first-in-first-out (FIFO) queue of length
6 where Rq[d] is an s × r × 2 NumPy array representing persons in the d + 1st day of illness.
This allows persons to be added to the appropriate subpopulation and risk group in R without
keeping track of risk groups in the infected compartments, making the calculation of infection
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probabilities more efficient. It is assumed that vaccination has an effect only prior to infection,
so the binary vaccination status is fixed upon infection.

Data storage The within-city model stores data in five lists: tlist, Slist, incIlist,
Ilist, and Rlist. Each list keeps a copy of the corresponding compartment for each time
included in tlist. To save memory, copies of Sdict, Idict, and Rq are not retained.

1.1.2 Transmission of infection

Transmission of disease is governed by a matrix betaMatrix and a parameter m represent-
ing the ratio of asymptomatic to symptomatic infectiousness. We first describe the calculation
of infection probabilities in the absence of vaccination and seasonality. We then discuss the
implementation of seasonality and the effects of vaccination.

Transmission parameters betaMatrix is an s × s matrix whose (i, j)th element is the
probability per unit viral load that an unvaccinated symptomatic infectious person in sub-
population i infects an unvaccinated susceptible person in subpopulation j in one time step.
betaMatrix can be specified as an argument at initialization of the within-city model. More
commonly, it is calculated from the arguments R0 and NGmatrix. R0 is the desired within-
city R0. NGmatrix is the within-city next-generation matrix, whose (i, j)th element is the
expected number of secondary infections in subpopulation j produced by an infected person
from subpopulation i, assuming subpopulation j is completely susceptible. If exactly one of
betaMatrix or NGmatrix is specified, the other will be calculated. If R0 is not specified,
it will be set equal to the spectral radius of NGmatrix. If R0 is specified, NGmatrix and
betaMatrix will be scaled to obtain a spectral radius for NGmatrix equal to R0.

Seasonality Seasonality is implemented by varying the within-city R according to the day of
the year and the location of the city. Before calculating transmission probabilities each day, the
betaMatrix of each city is multiplied by its R0ratio.

Infection escape probabilities Recall that m gives the relative infectiousness of an asymp-
tomatic case compared to a symptomatic case. Let vd be the viral load of trajectory v on day
d (in log10 TCID50/ml), and let VES and VEI be the vaccine efficacies for susceptibility and
infectiousness, respectively. Let pijvd,s(τinf, τsus) be the probability per day that a susceptible in
subpopulation s vaccinated τsus days ago will be infected by an infected person in subpopulation
i with symptom status j and viral load trajectory v on day d of illness who was vaccinated τinf
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days ago. Then

pijvd,s(None, None) = m1−jvdβis (1)

pijvd,s(None, τsus) =
(
1− VES(τsus)

)
m1−jvdβis (2)

pijvd,s(τinf, None) =
(
1− VEI(τinf)

)
m1−jvdβis (3)

pijvd,s(τinf, τsus) =
(
1− VEI(τinf)

)(
1− VES(τsus)

)
m1−jvdβis, (4)

where τ = None indicates an unvaccinated person and βis = betaMatrix[i, s]. Fix a day and
let Iijvd(τ) denote the number of infected persons in subpopulation i with symptom status j and
viral load trajectory v on day d of illness who were vaccinated τ days ago. Then a susceptible
person in subpopulation s who was vaccinated τsus days ago escapes infection on that day with
probability

Qs(τsus) =
∏
τ,ijvd

(
1− pijvd,s(τ, τsus)

)Iijvd(τ). (5)

After infection, an unvaccinated susceptible becomes symptomatic with probability psymp and
a vaccinated susceptible becomes symptomatic with probability VEP(τsus)× psymp.

Transition from S to I At time t, let Si(τ) be the number of susceptibles in subpopulation i
who were vaccinated τ days ago (with τ = None for unvaccinated susceptibles, and let I∗i (τ)
be the number of new infections among them. Then

I∗i (τ) ∼ binomial
(
Si(τsus), 1−Qi(τ)

)
, (6)

where Si(τ) = Sdict[t − τ ][i] and Qi(τ) is given in equation (5). To reduce the number of
infected compartments in the model, we have new infections become symptomatic or asymp-
tomatic immediately. Let I∗i0(τ) and I∗i1(τ) be the numbers of symptomatic and asymptomatic
infections among the I∗i (τ) infections from subpopulation i vaccinated at time t− τ . Then

I∗i0(τ) = I∗i (τ)− I∗i1(τ) (7)

I∗i1(τ) ∼ binomial
(
I∗i ,
(
1− VEP(τ)

)
psymp

)
(8)

Each newly infected person is assigned to one of six viral load trajectories, with probability 1
6

of being assigned to each trajectory.

1.1.3 Implementation

The model is written in Python 2.6.2 (http://www.python.org) using the SciPy and NumPy
packages [1]. The within-city model is implemented in an object called an epiList, which
contains all of the functions and data required to run the model. A within-city epidemic can be
run using the function city epidemic. The primary functions of the within-city model are:
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imprt converts a number of infections to import into an infection probability for susceptibles.
Infected susceptibles are sent to the appropriate infected compartments, with new infected
compartments created as necessary.

vaccinate vaccinates each unvaccinated susceptible or infected person with a given proba-
bility. This probability can vary by city, subpopulation, and risk group, and it can depend
on the time and the current state of the model. Vaccinated persons are placed in new
vaccinated susceptible and infected compartments associated with the vaccination time.

increment calculates infection probabilities, chooses newly infected persons from each sus-
ceptible compartment, subdivides them by symptom status and viral load trajectory, and
places them in the appropriate infected compartment, creating new compartments as nec-
essary. It also places susceptible and infected compartments associated with vaccination
times ≥ 28 days ago into the corresponding ’Past’ compartments.

Each of these is allowed at most once in each time step; only increment is required. Within
each time step, they must occur in the following order: (1) imprt, (2) vaccinate, and (3)
increment. At the end of each time step, the number of susceptible, infectious, and recovered
persons is recorded.

1.2 Multi-city (global) model
The global model links together the 321 within-city models by allowing travel between them
and controls seasonality. Locations of the cities are shown in Figure S2. The model is based
on [2] and uses air transport data from [3]. It records the total number of susceptibles, incident
infections, infections, and recovereds in each time step, and (optionally) can store a matrix for
each time step showing the number of travelers from each city to every other city.

1.2.1 Age groups

All cities are divided into two age groups: 0–14 years old and 15+ years old. The population
of each city is divided into two age groups based on the proportion of the population under 15
in its country [4]. The choice of 15 years as a cutoff was made because it is relevant to the
transmission of influenza and we have data about the proportion of the national population in
these age categories for each nation containing at least one of the 321 cities in the model. (We
also have information about the proportion of national populations above 65 years old, but these
people are currently grouped with everyone else over 15.) The transmission probabilities are
tuned to obtain a next-generation matrix proportional to:

Mean secondary cases
Children Adults

Child 1.8 0.5
Primary case

Adult 0.5 0.2

(9)
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from page 4 of [5]. This next-generation matrix is constant across cities regardless of age dis-
tribution. We experimented with having a scaled transmission-probability matrix and allowing
the next-generation matrix to vary with the age distribution, but this produced unrealistically
low R0 in Europe and Japan and unrealistically high R0 in Africa and the Middle East.

1.2.2 Travel between cities

For efficiency, only infected travelers are tracked in the model. Infected visitors to a city are put
into the infected compartment corresponding to their vaccination time, symptom status, viral
load trajectory, and day of illness. They progress through the infected compartments and travel
to other cities just like the other infected persons in the destination city. Upon recovery, they
return immediately to their home city.

Departures Let VAB be the number of persons from city A who travel to city B per day.
In each time step, each asymptomatic infected person in city A travels travels to city B with
probability

PAB =
VAB
PopA

, (10)

where PopA is the population of city A (residents only). All persons who depart city A for
city B at time t spend all of day t in city A and all of day t + 1 in city B. Symptomatic
infected persons travel fromA toB with probability sympTratio×PAB, where sympTratio
is an attribute of the within-city model. In the global model, all cities have the same value of
sympTratio, which can be set to zero for consistency with [2] and other prior work. In our
simulations, we use sympTratio = 0.25. The results are most sensitive to this ratio in less
connected regions, where the pandemic might peak during the second season (Figure S4).

Arrivals Upon arrival, each visitor is placed in the infected compartment that corresponds to
his or her vaccination time in the destination city. If no such compartment exists, a new one is
created. Within that compartment, he or she is placed in the appropriate symptom status, viral
load trajectory, and day of illness.

1.2.3 Implementation

The global model is implemented through a globalModel object. Implementing travel be-
tween cities and seasonality required a few additions to the epiList objects used for the
within-city models.

Additions to within-city models The send function creates a list of tuples consisting of vac-
cination times and 2× 2× 6× 6× k NumPy matrices of infected visitors going to other cities,
where k is the number of destination cities to which at least one infected person is traveling.
The cities to which people can travel are kept in a list called destList and the probability
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of traveling to each destination is kept in a list called destProbs, whose last entry is the
probability of remaining in the city. The receive function takes a list of tuples containing
vaccination times and 2×2×6×6 NumPy matrices of infected arrivals and adds them to the ap-
propriate infected compartments. The exchange function of globalModel runs the send
function of each city with at least one infected person and distributes the visitors to destination
cities through their receive functions. The list Rq of each city ensures that infected residents
are returned to the appropriate recovered compartment of their home city upon recovery from
infection.

Functions A global epidemic is run using the function global epidemic. The primary
functions in the globalModel are

exchange exchanges visitors between cities using their send and receive functions.

imprt imports infections to specified cities using their imprt functions.

vaccinate vaccinates persons in specified cities using their vaccinate functions..

increment adjusts the R0ratio for all cities and increments the model by calling their
increment functions. It records the total number of susceptibles, new infections, in-
fecteds, and recovereds in the model. Optionally, it can also record a matrix of numbers
of travelers between each ordered pair of cities.

Each function can be called only once in each time step; only exchange and increment are
required. Within each time step, they must be called in the following order: (1) exchange,
(2) imprt, (3) vaccinate, and (4) increment. In the base class, globalModel, there
is no seasonality and no vaccination. Seasonality and vaccination strategies are implemented as
subclasses.

Data The epiList for each city is kept in a dictionary called Cities that maps city names
to the corresponding epiList objects. The total number of susceptibles, new infections,
infecteds, and recovereds in the global model are kept in variables called S, I, and R. The
time steps from the model are kept in the list tlist, and lists of the number of susceptibles,
incident infections, infecteds, and recovereds at each time step in each city are kept in lists
Slist, incIlist, Ilist, and Rlist. (The corresponding lists for each city are attributes
of the corresponding epiList object, as described above.) If exchangeList == True, the
global model will save a matrix of the number of travelers in each (origin, destination) pair at
each time step.
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