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Supplemental Results
Potential transcription factor binding motifs (TFBMs) associated with the METH response


Similar to Dieterich et al. [1], Song et al. [2] and Li et al. 
 ADDIN EN.CITE 
[3,4]
, we employed a false discovery rate (FDR) analysis of microarray data followed by qRT-PCR (Tables S4, S5, S7, S8) in order to determine candidate genes for identifying potential transcription factor binding motifs (TFBMs) associated with xenobiotic responses.  We added “-like” to possible TFBMs we observed from Drosophila, since the patterns of these potential TFBMs were similar to those of mammals having the corresponding functions (Figure S4-6).

Of the potential TFBMs, Yin Yang 1-like (YY1-like) was the most similar to its mammalian counterpart (Table S4).  Previously linked with the METH response in mice [5], YY1 is a 65 kDa zinc finger transcription factor which appears to be highly conserved across vertebrates 
 ADDIN EN.CITE 
[6,7]
.  YY1 is associated with histone acetyltransferase and histone deacetylase cofactors. Amphetamines are known to increase histone H4 acetylation in the striatum of mice 


[8] ADDIN EN.CITE , with chronic use increasing histone H3 methylation on the c-fos promoter 
 ADDIN EN.CITE 
[9]
.  Additionally, the YY1 response element, the c-Myc promoter, and -enolase play an interactive role in tumorigenesis [10]. YY1 is (i) associated with increases in human heart failure (a component of the METH syndrome in humans) and (ii) a negative regulator of the alpha myosin heavy chain (MyHC) [11], a protein responsive to METH treatment both in mammals 
 ADDIN EN.CITE 
[12]
 and in Drosophila (Table S2).

Proteases

From the proteomic data, we also observed a 10-fold increase in arginine kinase, a 10-fold decrease in protein kinase D, and a 5-fold decrease in serine protease inhibitor 2.  Oxidative stress has been previously reported to induce arginine kinase expression [13] and protein kinase D activation in intact cells in a dose- and time-dependent manner [14].  Protein kinases have also been linked to the pathogenesis of Parkinson's disease [15] and to responses in the brain to METH treatment 
 ADDIN EN.CITE 
[16,17]
.  Trypsin and trypsin-like serine proteases and their inhibitors are known to play very important roles in brain-related (i) neural development and plasticity, and (ii) neuroregeneration and neurodegeneration 
 ADDIN EN.CITE 
[18,19,20,21,22,23,24,25,26]
.  However, serine proteases and several other proteases increase oxidative stress, indicating the potential for direct interaction between proteases and reactive oxygen species (ROS) that contributes to the overall enhancement of oxidative stress that leads to cell death [27].
Cytochrome P450s and glutathione-S transferases 

Our microarray analyses (using KEGG and FDR) demonstrated that cytochrome P450 and glutathione S transferase (GST) transcripts were up-regulated in response to METH (Table S1, S5).  METH is known to induce P450 expression and be metabolized by cytochrome P450s in rats [28], results that are consistent with the up-regulation of P450s detected in Drosophila.  However, the toxic actions of some chemicals (e.g. 2,3,7,8-tetrachlorodibenzo-p-dioxin) have been associated with the ROS produced by the induction of P450s 
 ADDIN EN.CITE 
[29,30]
.  Different drugs selectively induce P450s, and P450 families 1, 2, 3, and 4 have been reported to play a role in the generation of ROS 
 ADDIN EN.CITE 
[31,32]
.  Seven GST genes were up-regulated in response to METH in Drosophila; GSTs can be induced in the kidney and hypothalamus of rats by d-amphetamine treatment 
 ADDIN EN.CITE 
[33,34]
.  In addition to detoxifying drugs, GSTs also allow organisms to reduce oxidative stress 
 ADDIN EN.CITE 
[35,36]
.  The induced GSTs in METH-treated flies may be involved in drug detoxification, a response to oxidative stress.

In addition to their roles in detoxifying xenobiotics and responding to oxidative stress, several cytochrome P450 and GSTs in Drosophila may also affect spermatogenesis. Cyp6a2, which is up-regulated in flies challenged with METH, is expressed in the testes, vas deferens, ejaculatory duct, and the sperm pump [37]. GstE1 was up-regulated in METH-treated flies and has been associated with the gene encoding farnesyl pyrophosphatase synthetase, an enzyme in the testes of rats that is essential for the migration of germ cells during spermatogenesis and for the synthesis of cholesterol [38]. The cholesterol/phospholipid ratio of the sperm plasma membrane determines whether the sperm can successfully penetrate an ovum [39]. In Drosophila, farnesyl pyrophosphate is converted into juvenile hormone (JH) [40]. Deficiencies in JH have been implicated in sterility and aberrant sexual behavior [41].

Oxidative stress

METH and its analogs have been associated with both oxidative stress and heart disease 
 ADDIN EN.CITE 
[42,43,44]
. Dynein, a motor protein that converts the chemical energy contained in ATP into the mechanical energy of movement, is prone to oxidation and dimerization [45]. Under oxidative stress, tropomyosin modification is associated with heart disease due to cytoskeletal remodeling and myocardial dysfunction [46]. In addition, the tyrosine nitration of MyHCs alters the structure of cardiac myocytes [47]. It remains to be determined if METH treatment causes physical damage to Drosophila’s dorsal tube, the insect equivalent of the heart. If it does, the METH-Drosophila model could provide insights into evolutionarily conserved aspects of human heart failure [48].

METH is a weak base capable of causing the alkalinization of acidic vesicles and organelles of cultured midbrain dopamine (DA) neurons, inhibiting dopamine compartmentalization  [49]. Gnegy et al. demonstrated that weak bases cause the efflux of DA from acidic vesicles 
 ADDIN EN.CITE 
[50]
. METH-induced toxicity is, in part, related to the increased cytosolic DA, which is rapidly metabolized, leading to the production of ROS 
 ADDIN EN.CITE 
[51,52]
. 

Ferritin

Iron chelators, such ferritin, are multifunctional proteins that are involved in several metabolic pathways including Fe homeostasis.  METH treatment is known to cause ferritin increases in the substantia nigra pars reticulata and globus pallidus of vervet monkeys 
 ADDIN EN.CITE 
[53]
.  These are parts of the brain that are involved in reward, addiction, and movement, and pre-filtering external stimuli, respectively.  Young vervet monkeys treated with METH had ferritin levels comparable to those of much older drug-naïve monkeys.  The negative consequences of chronic ferritin H-chain over-expression have been associated with aging in mice 
 ADDIN EN.CITE 
[54]
.  Increased brain iron and ferritin are known to occur in the substantia nigra zona compacta of Parkinson's patients [55]; long-term METH use can result in Parkinson's-like symptoms. Conversely, protection from oxidative stress has been shown in young mice that over-express the ferritin H-chain, because of the iron-chelating properties of ferritin 
 ADDIN EN.CITE 
[56,57]
. In contrast to the observations in mammalian systems 
 ADDIN EN.CITE 
[53]
, we observed a 10-fold decrease in ferritin 1 heavy chain homologue protein in METH-treated flies (Table S2). It remains to be determined if this change in ferritin expression is associated with the brain in Drosophila.

Steroidal systems


The analysis of self-regulation through transcription factors also revealed the differential expression of genes and proteins known in mammals to be associated with androgen receptors, c-Myc, and p53 (Figure 3).  In mammals, amphetamines are known to influence testosterone levels and the production of progesterone by increasing the activity of specific P450s 
 ADDIN EN.CITE 
[58]
.  In mice, METH causes an up-regulation of c-Myc, which is involved in apoptosis, both at mRNA and protein levels [59].  The tumor suppressor p53 is associated with the long-term neurotoxic effects of METH 
 ADDIN EN.CITE 
[60]
.  So, unsurprisingly, p53 knockout mice had fewer side-effects due to METH treatment than did control mice.  METH-treated wild-type mice had reduced dopamine transporter mRNA and numbers of tyrosine hydroxylase-positive cells in their substantia nigra pars compacta and the ventral tegmental area; homozygous p53 knockout mice were not affected by METH treatment.
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