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Supplemental Methods S4: Theoretical model

Here we provide a more detailed description of the theoretical model that is sketched in the main paper. We first

assume that the read depth at each base is Poisson-distributed, with mean λ equal to the average coverage (e.g.,

λ = 2 for a 2x assembly). Therefore, given that a base has been sequenced, its read-coverage x is distributed as

p(x|x > 0;λ) =
Pois(x;λ)

1− Pois(x = 0;λ)
=

λxe−λ

x!(1− e−λ)
. (1)

This assumption appears to hold fairly well in practice for our data, although most assemblies do show a slight

depletion of low-coverage bases and enrichment of high-coverage bases (Figure S4), perhaps due to cloning biases.

Second, we assume that true error rates are well predicted by nominal quality scores, as suggested by our empirical

data (Figure 2). Third, we assume independence of quality scores across reads, so that with a read depth of

x at some position i, the joint distribution of quality scores at i, p(qi,1, qi,2, . . . , qi,x), is equal to a product of

marginal distributions, p1(qi,1)p1(qi,2) · · · p1(qi,x), where p1(q) is the probability of observing a quality score q

in an individual read. Notice that this property does not require that quality scores are identically distributed along

each read (which is clearly not true; see Figure S1), as long as the offsets of overlapping reads are uniformly

distributed. Finally, we assume that a quality score for an assembled base can be accurately expressed as a sum of

the quality scores in the individual reads.

These assumptions are not strictly consistent with empirical observations, but we expect them to hold approx-

imately for real data. Furthermore, they allow several quantities of interest to be computed easily using only the

distribution of quality scores for single reads, p1(q), which, as noted, can be estimated empirically. By the read-

independence and score-additivitity assumptions above, the distribution of quality scores for any specific depth-of-

coverage x, px(q), is given by an x-wise convolution of p1, which can be computed recursively, for modestly large

x, using the relation

px(q) =
∑
q′

p1(q
′)px−1(q − q′). (2)

The overall distribution of quality scores for an assembly with average coverage λ can then be computed by
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marginalizing with respect to the Poisson-distributed read depths:

p(q|λ) =
∞∑
x=1

λxe−λ

x!(1− e−λ)
px(q). (3)

This quantity can be approximated arbitrarily closely by evaluating the sum up to a sufficiently large xmax. We set

xmax to the 0.999 quantile of the Poisson distribution with mean λ.

Assuming that quality scores accurately predict error rates, the expected overall error rate corresponding to this

distribution is given by

err(λ) =
∑
q

p(q|λ)10−q/10. (4)

For convenience of interpretation, we express this quantity in phred units and denote it Q∗, with

Q∗(λ) = −10 log10 (err(λ)) = −10 log10

(∑
q

p(q|λ)10−q/10
)
. (5)

It is worth noting that Q∗ is a generalized f -mean of the basewise quality scores, with f(q) = 10−q/10. Similarly,

the error rate in regions of x-fold coverage, expressed in phred units, is

Qx = −10 log10

(∑
q

px(q)10
−q/10

)
. (6)

The fraction of the total error that comes from regions of single coverage is therefore

F1 =
λ1e−λ

1!(1− e−λ)
· 10−Q1/10

10−Q∗(λ)/10
=

λe−λ

1− e−λ
· 10(Q

∗(λ)−Qx)/10. (7)

As shown in Figure 3, our estimates of p1 imply that Q∗(λ) is closely approximated by a measure of error

that considers only single-coverage regions of the assembly, which we denote Q̃∗. This quantity has a simple

closed-form expression, and can be used to approximate Q∗ for any λ:

Q̃∗ = −10 log10

(∑
q

λe−λ

1− e−λ
p1(q)10

−q/10

)
= Q1 − 10 log10

(
λe−λ

1− e−λ

)
(8)

The last term above is fairly well approximated by the linear function 3.5λ in the range of interest. Based on our

data, Q1 = 19.7. Thus, to a first approximation, Q̃∗ ≈ 20 + 3.5λ.


