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Supplemental Methods S3: CONGO exon-finding analysis

To assess how error correction can improve methods for functional element identification, we tested the CONGO
comparative protein-coding exon predictor (Lin & Kellis, in prep.) using both our original alignments and a version
that had been processed by automatic sequencing error mitigation (SEM). Like other modern methods for com-
parative gene prediction (for review, see [1]), CONGO uses a statistical machine learning algorithm to combine
several lines of evidence, including codon substitution frequencies, indel and frameshift patterns, and splice site
signal detectors, but without using any experimental evidence such as transcript sequences.

Measuring the standard “Exon Sn” and “Exon Sp” performance statistics, which require exact agreement be-
tween predictions and annotations [2], the error-corrected alignments led to a significantly improved specificity
without detracting from sensitivity (Table S4). This improvement was observed when we applied the CONGO
model trained on the original alignments to SEM-processed alignments, and further enhanced when we both
trained it on and applied it to the SEM-processed alignments (with no other methodological changes). For ex-
ample, the original Exon Sp measured against pooled annotations of the major human gene catalogs (excluding
the regions used to train CONGO’s graphical model) was 89.88%, which improved to 90.28% with the original
model applied to the error-corrected alignments, and further improved to 90.49% when the model was retrained
for the error-corrected alignments. Meanwhile, exact recovery of exons in the high-quality CCDS set increased
slightly from 82.84% to 82.96%. The improvement in specificity held across individual chromosomes, while the
sensitivity was slightly variable (Table S5).

Overall, the improvement from the error correction was significant but not dramatic, amounting to a ~6%
reduction in the false positive rate measured in this way (some of the “false positives” could represent still-unknown
coding exons). Also, the results were mixed when we measured performance by allowing any amount of overlap
between predictions and annotations (see “Missed Exons” and “Wrong Exons” in Table S4), suggesting that the
error correction was more helpful for identifying the correct boundaries of coding exons than determining their
presence or absence.

To a certain extent, probabilistic models such as semi-Markov conditional random fields, which underlie

CONGO, inherently tolerate noise in the input data, by quantitatively weighing adverse observations (e.g. frameshifts



or stop codons) based on the frequency of such events in training data, rather than immediately disqualifying a pre-
diction based on fixed rules. Thus, it is not very surprising that the error correction yielded to only a modest
improvement in its performance. Notably, the relative weight that CONGO’s machine learning procedure assigned
to frameshifting indels increased by about 20% in the retrained model, suggesting that observed frameshifts are
indeed more reliable in the error-corrected alignments. We conclude that the significant improvement in exact exon
prediction performance indicates that the error correction increases the reliability of the 2X sequences, immediately

leading to improved results even for advanced, already noise-tolerant probabilistic methods.
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