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Human mobility networks, travel restrictions and the

global spread of epidemics

P. Bajardi1,2, C. Poletto1, J. J. Ramasco3, M. Tizzoni1,4, V. Colizza5,6,7, A. Vespignani8,9,10

1 Travel related measures and air travel flows reduction

Since the beginning of May 2009, many governments implemented different measures to pre-
vent the A(H1N1) virus from crossing the international borders by air travel. Table 1 presents an
overview of the measures adopted to slow down the spread of the A(H1N1) pandemic by con-
trolling or limiting the international air travel flows. The measures applied were recorded by the
International Airport Transport Association site [1] and were also reported by news media sources
[2, 3, 4]. We list the measures from those with the highest impact on the air travel flows, aiming at
isolating one country from potential sources of infection, to the less impacting measures, though
capable of significantly affecting the travel behavior of passengers worldwide.

Since the end of April until the end of May 2009, four countries enforced a ban of all direct
flights from Mexico: Argentina, China, Cuba and Peru. The traffic originating from these countries
accounts only for 3% of the total air international traffic departing from Mexico (IATA database).
The travel ban enforced by the Chinese Government affected the only direct connection with Mex-
ico as of May 2009. The connection was not yet restored at the end of 2009 [5].

Many Asian countries enforced quarantine measures for passengers traveling from affected
areas and showing influenza-like symptoms. Others, mostly in the Asian region although not
exclusively, installed thermal scanners at airports’ terminals prolonging their use, in some cases,
until January 2010 [6]. Furthermore, immediately after the international alert, over 14 entities
including governments and international organizations issued health travel warnings advising
people against non-essential travel to Mexico. Even if the warnings do not physically hamper
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travelers’ mobility, they increase people’s awareness of the risks of traveling in the outbreak region,
therefore contributing to further decrease the air traffic flows. Table 1 does not include other
measures, such as reporting passengers with symptoms on board, checking for signs of infection
through visual assessment at terminal checkpoints and requiring passengers to fill a health status
declaration form, which were widely adopted by many countries.

All these measures, with the addition of self-imposed limitations due to the pandemic concern,
led to the reduction of the number of passengers flying to and from Mexico. Table 2 reports the
monthly number of passengers (in millions) who traveled to and from Mexico on international
flights from April 2009 to December 2009. Data are obtained from the site of the Secretaría de
Comunicaciones y Transportes (Mexican Department of Transportation) [7]. If compared to 2008,
the drop in the number of passengers has been particularly high during May 2009 following the
A(H1N1) pandemic alert issued by the WHO. The international air traffic to/from Mexico returned
to normality in about 3-4 months.

Adopted measure Country Time period

Mexican flight ban

Argentina from April 28 to May 14, 2009 [9, 10]
China from May 2, 2009 [5, 11]
Cuba from April 30 to May 31, 2009 [12]
Peru from April 29 to May 13, 2009 [13, 14]

Quarantine of passengers
China, Hong Kong discontinued by all countries

Japan, Taiwan, by July 2009.
Singapore.

Thermal screening

Bulgaria, Chile,
China, Ecuador,

Hong Kong, India, discontinued by all countries
Jordan, Lebanon, by January 2010.
Malaysia, Qatar,

Singapore, Thailand,
UAE.

Health travel warnings

Bosnia, Bulgaria,
Canada, Chile,

Colombia, France, discontinued by all countries
Germany, Korea, by June 2009.
Russia, Turkey,

United States, UK
Venezuela, Vietnam.

Table 1: Known measures adopted worldwide against the pandemic spread [1, 2, 3, 4].
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Passengers on Passengers on
Month international flights, international flights, Total

Mexican airline (mil.) foreign airline (mil.)

April
2008 0.6 1.7 2.3

2009 0.6 1.6 2.2

var. = −6% −4%

May
2008 0.6 1.5 2.1

2009 0.4 0.7 1.1

var. −33% −53% −48%

June
2008 0.6 1.5 2.1

2009 0.5 1.1 1.6

var. −17% −27% −24%

July
2008 0.8 1.6 2.4

2009 0.7 1.3 2.0

var. −12% −18% −17%

August
2008 0.7 1.5 2.2

2009 0.7 1.2 1.9

var. = −20% −14%

September
2008 0.5 0.9 1.4

2009 0.5 0.9 1.4

var. = = =

October
2008 0.6 1.1 1.7

2009 0.5 1.0 1.5

var. −17% −9% −12%

November
2008 0.6 1.4 2.0

2009 0.6 1.3 1.9

var. = −7% −5%

December
2008 0.7 1.6 2.3

2009 0.7 1.5 2.2

var. = −6% −4%

Table 2: Mexican air traffic statistics April - December 2009 [7]. In the reference scenario the traffic
reduction has been modeled according to these values. They were adjusted to take into account
the economic recession that has produced an overall drop in the traffic of 2009with respect to 2008.
The average drop was estimated to be equal to 6% based on the traffic values of the months prior
to the pandemic.
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2 The GLobal Epidemic and Mobility model

GLEaM [15, 16] is a global epidemic and mobility structured metapopulation model. It is based
on a meta-population approach [17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28] in which the world is
divided into geographical regions defining a subpopulation network where connections among
subpopulations represent the individual fluxes due to the transportation and mobility infrastruc-
ture. GLEaM integrates three different data layers [15, 16]: (i) the population layer that describes
the demographic composition of the model, (ii) the transportation mobility layer, and (iii) the
epidemic layer which models the infection transmission within each subpopulation. Both the
traveling and the infection spreading are discrete-time stochastic processes with a time resolution
of one day, and the individuals are regarded as integer random variables. By varying the details
and the parameters of the model, it is possible to simulate the global spreading of many different
kinds of infectious diseases. In the following, we will describe first the general architecture of the
model (i.e. the three layers), and then the aspects of the specific application of the model to the
A(H1N1) influenza pandemic.

2.1 Demographic, mobility and epidemic layers

Population layer
The demographic layer is based on the high-resolution population database of the “Gridded Popu-
lation of the World” project of SEDAC (Columbia University) [29]. We extracted from this database
the world population with a geographical resolution of 15 × 15 minutes of arc. The census areas
associated to the subpopulations of the metapopulation system are obtained by a Voronoi-like tes-
sellation of the Earth surface taking as centers the coordinates of 3362 airports [15, 16].

Mobility layer
The transportation mobility layer integrates air travel mobility from the International Air Trans-
port Association (IATA) [30] and OAG [31] databases, and the commuting patterns worldwide
obtained from the data collected and analyzed from the census of more than 30 countries [15, 16].
The number of passengers traveling each time step is an integer random variable defined by the
actual data from the airline transportation database. Short range commuting between subpopula-
tions is modeled with a time scale separation approach that defines the effective force of infections
in connected subpopulations [15, 16, 32, 33].

Epidemic layer
The infection dynamics within each subpopulation is modeled as a homogeneous mixing process
with a compartmental approach specific for the disease considered. For the case of the A(H1N1)
pandemic, we select the {S, E, Ia, Ist, Isnt, R} compartmentalization [34, 35] described in the main
paper (see Fig. 1 of the main paper for a schematic representation of the compartmental model).
The parameters that regulate the transitions between the compartments along with their descrip-
tions and values are listed in Table 3. The generation timeGt (the sum of the latency and infectious
period, ε−1 and µ−1) and the basic reproductive number are set according to the estimates of [16]
(see the following Subsection). All the other parameters are assumptions of the model based on
estimates found in the literature [35, 36, 37, 38]; an extensive sensitivity analysis was performed
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in Ref. [16] in order to assess the effects that variations on these values can have on the simulation
results and the explored ranges of each parameter are reported in Table 3.

Parameter Description Best Estimate Interval Estimate

R0 basic reproductive number 1.75 1.64− 1.88

Gt mean generation time (days) 3.6 2.2− 5.1

αmin minimum seasonality rescaling 0.65 0.6− 0.7

Assumed Sensitivity
values analysis range

αmax maximum seasonality rescaling 1.1 1.0− 1.1

rβ
relative infectiousness

0.5 0.2− 0.8
of asymptomatic individuals

pt
probability of becoming a

0.5 0.4− 0.6
traveling symptomatic individual

pa
probability of becoming an

0.33 0.33− 0.5
asymptomatic individual

Table 3: Epidemic parameters along with their description and value. For R0 we report the 95%
reference range. Gt interval is defined by the range of plausible constrained values sampled in the
Monte Carlo approach that satisfy a likelihood ratio test at the 5% level. The αmin interval is the
best-fit range within the minimal resolution allowed by the Monte Carlo sampling.

2.2 2009 H1N1 calibration and parameters’ estimate

In order to simulate the H1N1 pandemic, the model was calibrated on the epidemiological data
available at the early stage of the pandemic evolution. The procedure used to estimate the pa-
rameters and the model details specific for the H1N1 case are described in Ref. [16] and will be
summarized in this section.

Seasonality is considered in the model by means of a sinusoidal forcing of the reproductive
number, with a scaling factor ranging from αmin during Summer season to αmax during Winter
season [21]. No rescaling is applied in the tropical regions. We assumed a value for αmax = 1.1

(exploring in the sensitivity analysis values between 1.0 and 1.1) and we estimated from empir-
ical data the value of αmin. Initial conditions were defined by setting the start of the epidemic
near La Gloria, Mexico, on February 18 2009 as in Ref. [16], analogously to other works [36] and
also following available data from official sources [39]. Finally, in order to reproduce the time-
line of events characterizing the early stage of the epidemic unfolding, we included in our model
the intervention measures implemented by the Mexican authorities in the attempt to control the
outbreak in Mexico. The measures implemented aimed at increasing social distance; they were
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simulated by considering a lower basic reproduction ratio in Mexico during this period of time
[16, 40].

The seasonal transmission potential of the new H1N1 influenza was estimated in Ref. [16]
from epidemiological data collected at the early stage of the pandemic evolution. The estimation
procedure was based on the detailed knowledge of human mobility patterns. In Ref. [16] we
used GLEaM to simulate the worldwide evolution of the pandemic and performed a maximum
likelihood analysis of the parameters against the actual chronology of newly infected countries.
The method shifts the burden of estimating the disease transmissibility from the incidence data,
suffering notification/surveillance biases and dependent on country specific surveillance systems,
to the more accurate data of the early case detection in newly affected countries. The seasonal
transmission potential of the H1N1 strain was assessed in a two-step process that first estimates
R0, the reproductive number in the Tropics region, where seasonality is assumed not to occur, by
focusing on the early international seeding by Mexico, and then estimates the degree of seasonal
dumping factor αmin, by examining a longer time period of international spread to allow for
seasonal changes.

The estimation of the reproductive number is performed through a maximum likelihood anal-
ysis of the model fitting the data on the arrival date of the first symptomatic in 12 countries directly
seeded from Mexico. Given a set of values of the disease parameters, we produced 2×103 stochas-
tic realizations of the pandemic evolution worldwide for each R0 value. Our model allows the
tracking of the importation of each symptomatic individual as observables of the simulations. This
allows us to obtain numerically with a Monte Carlo procedure the probability distribution Pi(ti)
of the importation of the first infected individual or the first occurrence of the onset of symptoms
in each country i at time ti. This allows us to define a likelihood function L =

∏
i Pi(t

∗
i ), where t∗i

is the empirical arrival time from the H1N1 chronological history in each of the selected countries.
Given that the countries are directly seeded from Mexico the variables ti are conditional indepen-
dent and thus we can factorize P({ti}) =

∏
i Pi(t

∗
i ). The transmission potential is estimated as

the value of R0 that maximizes the likelihood function L, for a given set of values of the disease
parameters.

In order to quantify the degree of seasonality observed in the current epidemic, we estimated
the minimum seasonality scaling factor αmin of the sinusoidal forcing by extending the chronol-
ogy under study and analyzing the whole data set composed of the arrival dates of the first in-
fected case in the 93 countries affected by the outbreak as of June 18. We studied the correlation
between the simulated arrival time by country and its corresponding empirical value, by mea-
suring the regression coefficient between the two datasets. Given the extended time frame under
observation, the arrival times considered in this case are expected to provide a signature of the
presence of seasonality. They included the seeding of new countries from outbreaks taking place
in regions where seasonal effects might occur, as for example in the US or in the UK. The regres-
sion coefficient was found to be sensitive to variations in the seasonality scaling factor, allowing
discrimination of the αmin value that best fits the real epidemic. A detailed presentation of this
analysis is reported in [16].

Along with the parameter calibration, a systematic sensitivity analysis was performed on the
assumptions used in the model [16], including the effect of the control measures in Mexico and
the initial date of the epidemic. Variations on the values of pa, pt, rβ and αmax were also tested.
Finally, we explored a shift of 7 days earlier for all arrival times available from official reports in
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order to analyze the effect of a possible late/missed detection of symptomatic individuals. The R0
estimate resulted to be quite robust to the other model assumptions.

Table 3 reports the reference values of the epidemiological parameters including the best esti-
mates and the range explored with the sensitivity analysis for the assumed values.

2.3 Simulations of the 2009 H1N1 pandemic influenza

The model calibrated as described in the previous section was used in the analysis presented in
this paper. As a further ingredient, here we account for the registered drop in the international
traffic to/from Mexico in the four months from May to August. The data reported in Section 1 are
used in order to estimate this latter effect month by month. We have adjusted the values of the
Table 2 to take into account the economic recession that has produced an overall drop in the traffic
of 2009with respect to 2008. The average drop was estimated to be equal to 6% based on the traffic
values of the months prior to the pandemic, and was then subtracted to the numbers reported in
the Table.

All these parameters and model details represent our reference scenario for the A(H1N1) pan-
demic evolution. This is compared to a range of additional scenarios where we test travel related
interventions of various kind. In particular we explored: reductions of different magnitude of the
traffic to/from Mexico including no reduction at all; different starting dates of the traffic reduc-
tion; air traffic ban in Argentina concerning flight to/from Mexico; border closure between Mexico
and US. The results of the comparison between these scenarios and the reference are described in
detail in the main paper and in the following sections.

3 Impact of the travel related measures

GLEaM allows us to assess the impact of the travel related measures that were implemented dur-
ing the outbreak of the 2009 H1N1 pandemic. We analyzed the effects of the international travel
ban imposed in Argentina and of the overall drop observed from May to September in the travel
flows to/from Mexico. Besides the observed drops in the airline traffic, we also explored the im-
pact of the closure of US-Mexico border, a travel related intervention measure that was highly
debated after the pandemic alert diffusion [41, 42, 43].

In order to address the impact of the overall reduction in the international passenger flows
to/from Mexico registered after the pandemic alert, we compared two scenarios. Our reference
scenario where the actual drop is considered, and the baseline scenario where the traffic is kept
invariant after the pandemic. Fig. 1a and Fig. 1b show the comparison of the seeding time dis-
tributions (i.e., the arrival of the first exposed or infectious individual from Mexico) obtained for
the two scenarios, considering, as in the main paper, United Kingdom and Germany as paradig-
matic examples. These results highlight the almost negligible impact of this drop despite its large
magnitude.

The same analysis was performed to investigate the benefit produced by the travel ban im-
posed by Argentina in delaying the epidemic spreading in the country. We simulated the ap-
plication of the ban and we compared this scenario with the reference scenario. In Fig. 1c, the
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Figure 1: Plots of the seeding time cumulative distribution under different intervention scenarios.
The seeding time is defined as the date of arrival of the first exposed or symptomatic case from
Mexico. Panels a and b: comparison of the reference scenario with a scenario in which the air
passenger flows is kept constant during the epidemic unfolding. The two countries UK (a) and
Germany (b) are taken as examples. The starting time for the traveler flow reductions is high-
lighted in the plots by a vertical line. Panel c: comparison of the reference scenario with a scenario
in which direct air connections between Argentina and Mexico have been suspended for the time
period indicated by the gray area. Panel d: Effect of the border closure between Mexico and the
US. The vertical line indicates the starting day of the intervention measure, April 24.
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cumulative distributions of seeding time are shown for both scenarios. The comparison points out
that such intervention measure, even if extreme, is quite ineffective.

In order to investigate the role of the intra-country commuting between Mexico and the United
States, we simulated the hypothetical scenario in which a closure of the border US-Mexico was
enforced, starting at the end of April, in response to the pandemic alert. This allows us to analyze
the impact in the spreading of the disease within the US due to this intervention measure. In
Fig. 1d the cumulative distribution of seeding times in the US is shown for the reference scenario
and the scenario without US-Mexico commuting. The comparison between the two cases shows
the inefficacy of such intervention measure.

4 Travel restrictions and delay in arrival times

Here we study the value of travel restrictions as control measures by estimating their efficacy in
terms of the delay induced in the arrival time of the disease in each geographical location (census
area, in GLEaM’s notation). Our starting point is the analytical work of Scalia-Tomba and Wallinga
[44] which determines the functional relationship between delay and traffic reduction for the case
of two connected populations with a deterministic infection evolution within each of them. Our
contribution is to extend this work to the two more realistic cases in which (i) the infection trans-
mission within each location is modeled with a stochastic SIR process, and (ii) a complex spatial
structure characterize the regions of origin and destination.

Our analytical results are confirmed by GLEaM’s numerical simulations. A detailed compari-
son between theoretical predictions and simulations is shown at the end of this Section.

4.1 Model with two subpopulations

In the following we extend the results of Ref. [44] to the case of a stochastic SIR infection dynamics
within each location. We first start with the case studied in Ref. [44]. Consider two subpopulations
A and B. The travel of infectious individuals from A (the origin of the epidemic) to B can be re-
garded as a non-homogeneous Poisson process with the average number of infectious individuals
arriving in B at each instant t being I(t)ωdt, where ω is the mobility rate from A to B and I(t) is
the number of infectious individuals in A at time t. The cumulative distribution of arrival time of
the first infectious individual at B can be written as follows [45, 46, 47]

P(t) = 1− e−ω
∫
t
0
ds I(s). (1)

Note that if the integral
∫∞
0
ds I(s) is finite the arrival time distribution is not strictly normalized

to one. The remaining probability, pno outbreak = e−ω
∫∞
0
ds I(s), corresponds to the instances in

which the disease does not arrive at B (Ref. [48] specifically address this point). Nevertheless
pno outbreak ' 0 whenever R0 is high enough (as for instance in the case of the A(H1N1) influenza)
and ωN >> 1 where N is the population of A (condition satisfied in GLEaM for all the census
areas and all the connections). The distribution given in Eq. (1) can be generalized to the case in
which a reduction of α in the travel occurs at time t0. We account for this effect by rescaling ω by
a factor 1− α. For t > t0, the expression for P(t) becomes then

Pα(t) = 1− e
−ω

∫t0
0
ds I(s)−(1−α)ω

∫
t
t0
ds I(s)

. (2)
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Consider now the time necessary for the location B to be seeded with a certain probability P(t) = ζ.
As done in Ref. [44], the difference in time to reach the same probability when travel reductions are
in place can be used to evaluate their effectiveness to delay the disease spread. Such delay ∆t can
be obtained by solving the equation P(t) = Pα(t + ∆t) = ζ, and, for the case in which I(t) ∝ et/τ,
we have that

∆t(α) = −τ ln(1− α) + τ ln
(
1− αe(t−t0)/τ

)
, (3)

where τ is the time scale of the exponential growth of the number of infectious individuals in A.
The second term of Eq. (3) is small whenever t − t0 � τ. Under this condition, the logarithmic
relation by Scalia-Tomba and Wallinga is recovered [44]

∆t(α) = −τ ln(1− α). (4)

We proceed now to adapt this analysis to the case in which the infection transmission within
the subpopulations is governed by an SIR stochastic dynamics. More complicated stochastic com-
partmental models can probably be subjected to a similar analysis even if it becomes more cum-
bersome. We will show that the expression for ∆t of Eq. (4) is still valid for the stochastic SIR.

Since the contagion process withinA is stochastic, we must consider a full distribution of infec-
tious individuals at time t pt(I) instead of a single value I(t). More precisely, since the cumulative
arrival time distribution of Eq. (1) depends on the integral of I(t), we will work with the joint
distribution pt(I, I) where I(t) =

∫t
0
ds I(s). In this new framework, Eq. (1) becomes

P(t) =

∫
pt(I, I) (1− e−ωI)dI dI. (5)

The explicit expression of pt(I, I) is therefore needed in order to perform the integral. Since our in-
terest lies in the early dynamics of the epidemic in A, we can obtain pt(I, I) by approximating the
contagion process with a birth-and-death process [49]. In this process, infectious individuals are
introduced in the system with a constant generation rate (the transmission rate β) and disappear
with a constant death rate (the recovery rate µ). This approach is analogous to the exponential
growth considered in the analysis of the deterministic contagion. Note that under these assump-
tions the compartmental models SIS and SIR are equivalent. The possible transitions of the system
of the birth-and-death process in the bivariate space of the vector (I,S) are given by

(I,S)→ (I+ 1,S + 1), with prob βIdt+O(dt),

(I,S)→ (I− 1,S), with prob µIdt+O(dt),

(I,S)→ (I,S), with prob 1− (β+ µ) Idt+O(dt),

(6)

where S stands for the size of the epidemic, which can be related to I as S ≈ β I. The forward
Kolmogorov equation associated to the process reads [50]{

∂tpt(I,S) = β (I− 1)pt(I− 1,S − 1) + µ (I+ 1)pt(I+ 1,S) − (β+ µ) I pt(I,S)
∂tpt(0,S) = µpt(1,S),

(7)

with the initial conditions p0(I,S) = δI,I0δS,0. This equation can be solved by introducing the
generating function associated to pt(I,S),

Gt(u,w) =
∑
I,S

uIwS pt(I,S). (8)
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Taking the partial derivative ∂tGt(u,w) and substituting ∂tpt(I,S) with the second term of Eq. (7),
we obtain the following differential equation for Gt(u,w)

∂tG = [βwu2 − (β+ µ)u+ µ]∂uG, (9)

whose solution is [50]

Gt(u,w) =

[
α1(α2 − u) + α2(u− α1)e

β(α1−α2)wt

(α2 − u) + (u− α1)eβ(α1−α2)wt

]I0
. (10)

Here α1 and α2 are the solutions of the following second order equation in u

βwu2 − (β+ µ)u+ µ = 0. (11)

The generating function Gt(u,w) contains all the information regarding the distribution pt(I,S).
An explicit expression of this probability distribution is not necessary since all observables can be
computed directly from it.

By using the definition of Gt(u,w) into Eq. (5), we have that

P(t) =

∫ (
1− e−

ω
β
S
)
pt(I,S)dI dS = 1−Gt

(
1, e−

ω
β

)
. (12)

Therefore the explicit formula for P(t) can be easily calculated. The full expression is quite compli-
cated and here we report an approximate functional form valid in the limit ω << β (a condition
that is satisfied in realistic situations). In this limit, P(t) can be approximated as

P(t) ' 1−
[
µR0(R0 − 1)

2 +ω(R20 − R0 + 1) +ωR0e
µ(R0−1)t

µR0(R0 − 1)2 +ω+ωR20e
µ(R0−1)t

]I0
, (13)

with R0 = β/µ. Despite this expression is quite different from the Gumbel distribution obtained
for the deterministic epidemic dynamics [45, 46], it gives us the same logarithmic relation for the
delay as a function of 1 − α, where α is the drop in the travel flow. This can be easily shown in
the case of travel reductions starting at t0 = 0, since Pα(t) is obtained from P(t) replacing ω with
(1−α)ω. Solving the equation P(t) = Pα(t+∆t) = ζ, with respect to the delay ∆t, we obtain that,
except for terms of the order of O(ω), Eq. (4) still holds in this case.

For t0 > 0, the calculations are a little more laborious but the results are similar. The expression
for Pα(t) must be modified to include the contribution to the arrival probability of the infectious
individuals in the source before and after the travel reductions occur. This means that

Pα(t) =
∫ (
1− e−

ω(1−α)
β

S1−ωαβ S2
)
pt0(I1,S1)pt(I2,S2)dI1 dS1 dI2 dS2

= 1−Gt0

(
1, e−

ω (1−α)
β

)
Gt

(
1, e−

ωα
β

)
.

(14)

Since the evolution of the system is described by a Markov process, the two contributions in the
integral can be regarded as independent. Once again we obtain ∆t from equating P(t) = Pα(t +

∆t) = ζ and we find the same logarithmic dependence between ∆t and 1 − α, as leading term in
an expansion inω:

∆t(α) = −
1

(β− µ)
ln(1− α) +

1

(β− µ)
ln
(
1− αe−(β−µ) (t−t0)

)
. (15)

11
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4.2 Model with a complex mobility network among subpopulations

Here we consider a case similar to the seed of the A(H1N1) pandemic where the origin of the
outbreak itself is characterized by a spatial structure and connections among subpopulations. A
traffic drop αwould then act upon all the transport connections between the country of origin and
that of destination, but will not affect the mobility connections within the country of origin. The
complex spatial structure of the transportation network in the source country plays an important
role in the timing of the disease propagation. Nevertheless, the analytic calculations, that we are
going to illustrate next, show that the logarithmic relation between ∆t and α of Eq. (4) is still valid
in the first order of approximation.

In order to generalize our previous framework to this case, consider a country B connected to a
set of cities Ak of the seeding country. The internal spatial structure of the transportation network
in B is not relevant for our calculations: the internal connections indeed do not count since the
arrival time of the disease in B corresponds to the first arrival from A at any of the B census areas.
We define ωk the travel rates from a census area Ak in A to the target country B. We assume that
the epidemic starts in a given city of A and spreads both within and outside the country. Let tk
indicate the arrival time of the epidemic at the Ak subpopulation. As in the previous Subsection,
we define Ik(t) =

∫t
tk
ds Ik(s), where Ik(t) corresponds to the number of infectious individuals

in Ak at time t, and t0 as the starting date for the travel reductions. The expression for Pα(t) is
therefore equal to

Pα(t) =

∫
{Ik,Ik}

(
1− e−

∑
kωk [α Ik(t0)+(1−α) Ik(t)]

)
pt0({Ik, Ik})pt({Ik, Ik})

∏
k

dIk dIk, (16)

where we have assumed that the stochastic properties of the spreading process can be described
by the distributions pt({Ik, Ik}), as we did in the previous Subsection. Notice that, since travel
reductions apply only to the connections between countriesA and B, the evolution of the epidemic
inside A is not expected to change by the introduction of such measures and so the distributions
pt({Ik, Ik}) are invariant.

To make calculations simpler, we consider a deterministic SIR. In this case, we can write Ik(t) =
Ck e

(t−tk)/τ, where Ck is a constant related to initial conditions. Therefore we have

Ik(t) = τCk
(
e(t−tk)/τ − 1

)
Θ(t− tk). (17)

This last expression differs from zero only for times t > tk, as guaranteed by the Heaviside func-
tion Θ(x), that is equal to zero when the argument is negative and equal to one otherwise. The
stochasticity of the spreading process now lies in the arrival times tk and in the initial conditions
Ck. This means that the distributions pt({Ik, Ik}) can be expressed as pt({tk, Ck}). Substituting it
in Eq. (16) we obtain

Pα(t) =

∫
{tk,Ck}

fα(t, tk, Ck)pt({tk, Ck})
∏
k

dtkdCk, (18)

where

fα(t, tk, Ck) =
(
1− e−

∑
k τωk Ck[αΘ(t0−tk) (e

(t0−tk)/τ−1)+(1−α)Θ(t−tk) (e
(t−tk)/τ−1)]

)
. (19)

12
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As before, in order to find an expression for the delay ∆t we solve the equation P(t) = Pα(t +

∆t) = ζ. Since
fα(t+ ∆t, tk, Ck) − f0(t, tk, Ck) ≥ 0 (20)

this equation simply reduces to

fα(t+ ∆t, tk, Ck) = f0(t, tk, Ck) ⇒
∑
k τωkCkΘ(t− tk) (e

(t−tk)/τ − 1) =∑
k τωkCk

[
αΘ(t0 − tk) (e

(t0−tk)/τ − 1) + (1− α)Θ(t− tk) (e
(t−tk)/τ − 1)

]
. (21)

Through straightforward calculations we thus find the expression for the delay ∆t induced by a
travel reduction α:

∆t(α) = τ {− ln(1− α) + ln(1− E)} , (22)

with

E = −α

∑
k|t>tk

ωk Ck
[
1+Θ(t0 − tk) (e

(t0−tk)/τ − 1)
]∑

k|t>tk
ωk Ck e(t−tk)/τ

, (23)

This term becomes negligible when t is large enough compared with t0 and with the tk of the
subpopulations of A. In this case, we recover the expression

∆t(α) = −τ ln(1− α). (24)

4.3 Comparison between analytical and numerical results

The logarithmic relation between the delay ∆t and the traffic drop α can be also tested in GLEaM’s
numerical simulations. To perform the comparison between theoretical expectations and simula-
tions we considered two possible scenarios. The full scenario described in Subsection 2.3, and one
in which we do not consider the control sanitary measures in Mexco. To both scenarios, we apply
travel reductions of magnitude α, starting on April 25, 2009. The simpler scenario, with no sani-
tary measures, is considered as a benchmark scenario where no change in the exponential growth
of the epidemic is induced by additional interventions.

We consider different values of α and compute for each of them the delay in reaching the
probability of seeding ζ = 90%. This procedure was carried out at a country level for several
destination countries. The theoretical predictions agree well with the numerical results for ∆t(α)
obtained with GLEaM, as can be seen in Fig. 2 where the logarithmic relation of Eq. (4) is plotted
against the simulation results. For the SEItIntIaR compartmental model used in GLEaM, the time
scale of the exponential growth is given by the relation [15, 16, 51]

τ−1 =
1

2

[√
(ε+ µ)2 + 4ε(β(1− pa + parβ) − µ) − (µ+ ε)

]
, (25)

and is not affected by seasonality. Despite the control sanitary measures in Mexico alter the epi-
demic exponential behavior, the logarithmic behavior of ∆t with 1 − α still holds to a good ap-
proximation for the full model described in Subsection 2.3 and considered in the main paper. As

13
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Figure 2: Delay ∆t as a function of the travel reductions 1 − α to reach a seeding certainty level
from Mexico of ζ = 90%. The results for the simplified model (without sanitary measures imple-
mented in Mexico) are plotted as red circles, while those for the full model as green squares. The
continuous curves correspond to the theoretical predictions of Eq. (4).
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Fig. 2 shows, the interplay between the travel restrictions and the control measures within Mexico
is quite complex. By dumping the exponential increase of cases in Mexico, the sanitary control
measures enhance the delay produced by travel restrictions, as it is quite evident for the case of
Germany. This effect is, however, memoryless. Indeed, the delay measured after the sanitary
controls are released follows the logarithmic relation as shown by the curve of the UK.

5 Global Invasion Threshold

After a brief introduction of the theoretical framework, we complete the description given in the
main paper of the analytical derivation of R∗.

We consider a synthetic metapopulation system whose demographic and mobility properties
are set in order to reproduce the statistical properties of the real systems. Several mobility net-
works at different scales – intra-city [52, 53], inter-city [54, 55], country scale [55], worldwide
scale [56, 57] – and of different type – air travel [56, 57], commuting [54, 55], movement of people
between city locations [52, 53] – have been studied and found to exhibit large-scale heterogeneities
at different levels. In particular, the number of connections from a given location (i.e. the degree
k of a node) is generally described by a broad distribution P(k), with P(k) representing the proba-
bility that a randomly extracted node has degree k. In addition, the fluxes of traveling people (the
weight wij of the link connecting i to j [56]) are also found to be characterized by very large fluc-
tuations with a weight probability distribution P(w) spanning over several orders of magnitude.
Finally, a statistical law relating the travel flux wij to the number of connections departing from
the two ending nodes i and jwas found in the worldwide air transportation network [56]:

wij ∼ (kikj)
θ. (26)

These properties are illustrated in Fig. 3 for the case of three empirical mobility networks char-
acterized by different spatial scales: the air transportation network analyzed in [56], the commut-
ing patterns among counties in the United States [58] and among municipalities in Italy [59]. The
figure reports for the three datasets the results for the degree distribution P(k), and the travel
fluxes wij as functions of the topology expressed in terms of kikj. All networks display large het-
erogeneities in the degree distribution and exhibit travel fluxes consistent with Eq. (26). It is worth
to note that these statistical features are invariant under changes of the mean of transportation
and of the spatial scale, thus pointing out their robustness as peculiar aspects characterizing these
systems.

Following the empirical analysis of Figure 3, we assume a metapopulation model whose un-
derlying structure is heterogeneous to include degree fluctuations, and characterized by travel
fluxes following Eq. (26). Both topology and travel fluxes are therefore expressed in terms of the
degree k of each subpopulation. A convenient description is then provided by the degree-block
variables of the metapopulation system [60], where each quantity that depends on a subpopula-
tion i (e.g. population size, number of infectious, etc.) is defined in terms of the subpopulation
degree ki. This corresponds to a mean-field assumption for which subpopulations with a given
degree k are considered statistically equivalent.

Within this theoretical framework, Eq. (1) of the main paper describes the evolution of the dis-
ease invasion at the subpopulation level in a coarse grained view in which the subpopulations are

15



P. Bajardi, C. Poletto, J. J. Ramasco, M. Tizzoni, V. Colizza, A. Vespignani 16

10
0

10
1

10
2

10
3

k

10
-4

10
-2

10
0

P(
k)

10
0

10
1

10
2

10
3

10
4

10
5

kikj

10
3

10
4

10
5

10
6

<
 w

ij >

10
0

10
1

10
2

10
3

k

10
-6

10
-4

10
-2

10
0

P(
k)

10
2

10
3

10
5

kikj

10
0

10
2

10
4

<
 w

ij >

10
0

10
1

10
2

10
3

k

10
-6

10
-4

10
-2

10
0

P(
k)

10
0

10
2

10
4

10
6

kikj

10
0

10
1

10
2

10
3

<
 w

ij >

World-wide airport network

US county commuting network

Italian municipality commuting network

Figure 3: Degree distributions and average weight of the connections as a function of the product
of connected node degrees for three empirical mobility networks.
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the basic elements of the process [61, 62]. We assume that a local outbreak starts in a given sub-
population and then spreads from one subpopulation to others by means of infectious individuals
traveling along the underlying mobility network. The link between the microscopic dynamics of
the infection transmission among individuals and the coarse grained description at the metapop-
ulation level is encoded in the term λk ′k. It represents the number of seeds traveling from the
diseased subpopulation k to the neighboring subpopulation k ′ during the entire duration of the
outbreak, and it depends on the details of the diffusion process of individuals as well as the indi-
vidual travel behavior and its interplay with the disease stages.

Following the results presented in Figure 3, we assume that the rate of diffusion on any given
edge from a subpopulation of degree k to a subpopulation of degree k ′ is inversely proportional
to the population size Nk of the origin location, and scales linearly with the travel flux wkk ′ from
k to k ′, i.e. dkk ′ = wkk ′

Nk
= w0(kk

′)θ

Nk
, where we used the statistical law of Eq. (26) observed in real

mobility networks. In order to explicitly compute λkk ′ we need to specify the compartmentaliza-
tion chosen for the disease modeling. Here we extend the analysis of Ref. [61, 62] and we explore
more structured and realistic compartmentalizations that take into account the presence of latent
and asymptomatic individuals and envision a possible modification of the traveling behavior after
presenting clinical symptoms.

More in detail, we consider the full compartmental model used in the main paper (see Fig.1
in the main paper). A susceptible individual in contact with a symptomatic or asymptomatic
infectious person contracts the infection at rate β or rββ, respectively, and enters the latent com-
partment where he is infected but not yet infectious. At the end of the latency period, denoted
by ε−1, each latent individual becomes infectious, entering the symptomatic compartments with
probability 1−pa or becoming asymptomatic with probability pa. The symptomatic cases are fur-
ther divided between those who are allowed to travel, with probability pt, and those who would
stop traveling when ill, with probability 1 − pt. Infectious individuals recover permanently with
rate µ.

The number of seeds λkk ′ can be approximated to the first order by

λkk ′ = dkk ′
[
(pt(1− pa) + pa) (ε

−1 + µ−1)S∞Nk + (1− pt)(1− pa)ε
−1S∞Nk]

= dkk ′S∞Nk (ε−1 + (pt(1− pa) + pa)µ
−1
)
, (27)

since each of the S∞Nk infectious individuals (with S∞ being the epidemic size [34]) can travel
with rate dkk ′ during a time period that is determined by his stage of disease. Asymptomatic
individuals and a fraction pt of the symptomatic can diffuse out of the diseased subpopulation
during a time window that equals the sum of the average latency and infectious periods, whereas
the non-traveling symptomatic individuals can only diffuse during their latency state.

Assuming an uncorrelated network so that P(k|k ′) = k ′P(k ′)/〈k〉 [64], and a disease with a
reproductive ratio close to the epidemic threshold, i.e. R0 − 1 � 1, one obtains for the global
invasion the threshold condition:

R∗ = (R0 − 1)S∞ [ε−1 + µ−1 (pt(1− pa) + pa)]w0 〈k2+2θ〉− 〈k1+2θ〉〈k〉
> 1. (28)

By explicitly introducing the expression of the epidemic size S∞ for an SEIR local dynamics with
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R0 close to 1 [63], we obtain the following expression for the global invasion threshold R∗:

R∗ =
2(R0 − 1)

2

R20

[
ε−1 + µ−1 (pt(1− pa) + pa)

]
w0
〈k2+2θ〉− 〈k1+2θ〉

〈k〉
. (29)

As described by Eq. (2) in the main paper, R∗ is the product of three functions that depend on the
disease parameters, as well as the topology and fluxes of the mobility of individuals. Travel-related
interventions can be modeled as the reduction of the mobility scale w0 or the reduction of the
traveling probability pt of symptomatic cases. The effect of such interventions is however damped
by the large topological fluctuations of human mobility patterns, since the more heterogenous is
the metapopulation network and the larger is the ratio 〈k2+2θ〉/〈k〉.

In order to better understand the crucial role of the topological heterogeneity of the mobility
network, we compute R∗ for a homogeneous network with the same average values of degree
〈k〉 and weight 〈w〉 of the heterogeneous one. In this case, all nodes have the same degree 〈k〉
and all the links are characterized by the same weight 〈w〉, which leads to a traveling rate dkk ′

that is simply 〈w〉/N through all the connections. Then, the number of seeds is given by λkk ′ =

〈w〉S∞ (ε−1 + (pt(1− pa) + pa)µ
−1
)
. Replacing this term in Eq. (1) in the main paper, we obtain

R∗ =
2(R0 − 1)

2

R20
〈w〉 (〈k〉− 1)

[
ε−1 + µ−1 (pt(1− pa) + pa)

]
. (30)

Figure 4 compares the heterogeneous and homogeneous network, and shows for both cases the
two-dimensional projection of the functional R∗(R0, α) (α indicates the travel reduction affecting
w0 in Eq. (29) and 〈w〉 in Eq. (30), respectively). In both cases the epidemiological parameters, ε,
µ, pa and pt, are set as described in Subsection 2.1. The red and green curves indicate the epidemic
threshold R∗(R0, α) = 1 for heterogeneous and homogeneous networks, respectively. The picture
highlights how the heterogeneity of the mobility network is responsible for favoring the epidemic
invasion.
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