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Sensitivity Analyses

Assumptions

In the main paper we have made some assumptions regarding effectiveness of control measures and test
sensitivity of the prevalence test. Here, we investigate the sensitivity of our results to these assumptions.
Table S 1 shows the four scenarios considered and the associated parameters that differ between them.
All other parameters were sampled from the ranges as given in the main text.

Table S 1. Assumptions for the scenarios explored in the sensitivity analyses and number
of parameter sets explored.

Model Parameters Scenarios

Baseline Ineffective
leuko-
depletion

Reduced
donor ban
effectiveness

Reduced test
sensitivity

Effectiveness of leukodepletion 40% 0 40% 40%
Effectiveness of donor ban 90% 90% 50% 90%
Test sensitivity 100% 100% 100% 50%
Number of parameter sets explored 1592100 795900 796400 796400

Parameter fitting

The estimated parameters for the different scenarios are shown in Table S 2. Varying the assumptions
regarding effectiveness of control measures and test sensitivity has very little impact on these estimates.
However, the basic reproduction number R0 does vary for the different scenarios, indicating the effect of
the different control policies. Nevertheless, for none of the scenarios does the upper limit reach anywhere
close to the threshold value. Even in the absence of all control measures we would not be in the situation
where a self-sustaining epidemic is possible.
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Epidemic scale

The overall shape and timing of the incidence curve is very similar under the four different scenarios
(data not shown), and the point estimates do not differ substantially (see Table S 3). However, the upper
limits of the credibility intervals vary somewhat between the different scenarios, with the largest upper
limit in the case of inefficient leukodepletion.

For reduced effectiveness of the donor ban, there is very little difference to the baseline scenario. While
this might be surprising at first, it is easily explained by the fact that most of the blood transfusion cases
are caused by donors that were infected via the primary route and are therefore not subject to the donor
ban, whereas those infected via blood transfusions themselves are on average fairly old and do not cause
many further transmissions during their remaining lifetime.

Although the test sensitivity is not a control measure, the prevalence in the population between 1995
and 2000 (as measured in the prevalence study) has an impact on the future course of the epidemic, with
larger epidemics possible if the prevalence of infection is high, as the prevalent people might transmit the
infection to others, whether they will develop clinical symptoms or not. If the sensitivity of the prevalence
test is assumed to be only 50%, the true prevalence in the population is expected to be twice as high as
the measured prevalence, and therefore the upper limits of the projected future size of the epidemic is
considerably higher under this scenario than for the baseline scenario.

Table S 3. Estimated medians (95% credibility intervals) of the cumulative number of
future cases from 2010 to 2179 by genotype for the different scenarios.

Scenario

Baseline Ineffective
leukodepletion

Reduced donor
ban effectiveness

Reduced test
sensitivity

MM 200 (20 – 2200) 140 (28 – 4200) 170 (20 – 2200) 470 (54 – 3000)
MV 160 (4 – 980) 150 (4 – 1600) 140 (5 – 930) 230 (10 – 710)
VV 13 (0 – 85) 12 (0 – 75) 11 (0 – 71) 14 (0 – 150)

Numbers are rounded to two significant digits.

Future transmissions

Due to the long incubation period it is conceivable that there might be a substantial number of cases in
the future which have already been infected in the past and would therefore not be preventable with any
additional control measures that might be implemented in the future. In order to assess the extent to
which infections of future cases have already occurred we performed further simulations for 798500 sets
of parameter values in which the transmission rate was set to 0 from 2010 onwards. The total number of
future cases is considerably lower than in the baseline scenarios (Table S 4). While the expected number
of cases from primary transmission is essentially identical indicating that these transmissions already
have occurred, the majority of the transfusion associated cases in the baseline scenario have not been
transmitted yet. The time series of the epidemic if no further transmissions occur is shown in Figure S 1,
and shows a substantially smaller secondary peak than that of the baseline scenario. The most striking
difference to the baseline time series (Figure 6 in the main text) is the sharp cut-off of unidentifiable
transfusion associated cases at around 2020 in the growing phase of the epidemic. This means that
theoretically, the immediate introduction of effective control measures preventing the transmission via
blood transfusions could reduce the number of future cases by around 260 over the next century as a best
estimate, or by up to 2600 if the worst case scenarios turn out to be true.
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Table S 4. Estimated medians (95% credibility intervals) of the cumulative number of
future cases from 2010 to 2179 by genotype and transmission route, assuming that no
further transmissions occur from 2010 onwards.

Transmission route

Genotype All routes Primary Identifiable
blood

Unidentifiable
blood

All genotypes 130 (23 – 400) 99 (17–230) 3 (0 – 27) 18 (1 – 210)
MM 16 (1 – 180) 1 (0 – 6) 1 (0 – 20) 11(0 – 160)
MV 100 (3 – 230) 92 (3 – 210) 1 (0 – 8) 5 (0 – 52)
VV 6 (0 – 38) 6 (0 – 36) 0 (0 – 1) 0 (0 – 5)

Numbers are rounded to two significant digits.
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Figure S 1. Median and posterior distributions of projected time series, assuming that no
further transmissions occur from 2010 onwards. A Total number of cases, B transfusion
associated cases that can be identified through donor-recipient pairing, C unidentifiable transfusion
associated cases and D to F number of cases in the different genotypes, MM, MV and VV, respectively.
Diamonds = observed epidemic, solid line = median, greyscale graduations: 10% range to 90% range.

The basic reproduction number

The basic reproduction number R0 is defined as the mean number of onward infections a typical infected
individual will cause, and in the limit of an infinite population this has the threshold property that for
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any values of R0 < 1, the epidemic will certainly die out, whereas for R0 ≥ 1, the epidemic will grow
exponentially until saturation is reached unless it dies out through stochastic effects in the early stages.
Values of R0 ≥ 1 therefore indicate the potential for a self-sustaining epidemic.

In our model the first generation of cases stems from primary infection through the consumption of
BSE-contaminated food. Individuals infected via this route are assumed to show different characteristics
to those infected in subsequent epidemic generations through human-to-human transmission via red cell
blood transfusions, for instance different incubation periods. The concept of the basic reproduction
number is valid in the early stages of an epidemic (before any saturation effects become important), but
after the stochastic fluctuations of the very first few generations have passed. For calculating R0, we
therefore only need to consider those infected via red cell transfusions.

Formulating the infection process as a multitype branching process, where the type i of any infected
individual is determined by their genotype and age at infection, the basic reproduction number R0 is
given as the leading eigenvalue of the next generation matrix M = (mij), where mij is the expected
number of infections of type j caused by a type-i individual [1]. The infection process can be subdivided
into two stages, (i) blood donation and (ii) infection following the transfusion.

Neglecting the effects of control measures such as leuko-depletion and the donor ban, individuals
donate infectious blood units according to a time-inhomogeneous Poisson process, where the donation
rate depends on age and the time since infection, as this determines whether infectivity in the blood has
developed yet. The generating function of this Poisson process is given by

fa,gPoisson(s) = exp [nb(a, g)(s− 1)] , (1)

where nb(a, g) is the expected number of infectious red cell units donated by a person of genotype g
infected at age a during their lifetime, which we shall calculate later. The probability that any infectious
red cell unit is transfused into a patient of age a is given by

Pb(a) =
Ψb(a)b(a)∑
a′ Ψb(a′)b(a′)

, (2)

where Ψb(a) is the age distribution of red cell transfusion recipients and b(a) is the mean number of
units given in a transfusion to a person of age a. If the unit is transfused to a patient of genotype g,
it will cause a new infection with probability βξg, such that the infection process can be described by a
multi-type Bernoulli process with generating function

f(s) = 1− β
∑
g

πgξg

(
1−

∑
a

Pb(a)sa,g

)
, (3)

where s = (sa,g)a∈{0,...,A},g∈{MM,MV,V V }.
The total number of further infections of age a′ and genotype g′ caused by a person of genotype g who

was infected at age a is given as the sum of X iid random variables, where X is the number of infectious
blood units donated. The generating function of the two-step process is therefore

fa,g(s) = fa,gPoisson (fBernoulli(s))

= exp

−β nb(a, g)
∑
g′

πg′ξg′

(
1−

∑
a′

Pb(a
′)sa′,g′

) . (4)

The expected number of further transmissions of age a′ and genotype g′ caused by a person of genotype
g infected at age a is given by the partial derivative of fa,g(s) with respect to sa′,g′ , evaluated at s = 1,
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that is the vector with all entries 1:

ma,g:a′,g′ =
∂

∂sa′,g′
fa,g(1)

= βnb(a, g)πg′ξg′Pb(a
′) . (5)

As the next generation matrix M = (ma,g:a′,g′) factorises, in the absence of control measures the basic
reproduction number R0 as its leading eigenvalue can easily be derived as

R0 = β
∑
a,g

πgξgPb(a)nb(a, g) . (6)

If the donor ban has effectiveness eb, it works by excluding a proportion eb of those who have ever
received a blood transfusion from donating blood, and therefore excluding a proportion eb of those who
have been infected by the blood-borne transmission route from donating. This means that the expected
number of units donated by an average infective is reduced to (1− eb)nb(a, g), therefore linearly reducing
the value of R0 by this factor. Similarly, the effect of leukodepletion is to reduce the transmission
probability β to (1 − el)β, where el is the effectiveness of leuko-depletion, reducing R0 by the factor
(1 − el), such that with leuko-depletion and the donor ban in place, the basic reproduction number is
given by

R0 = (1− el)(1− eb)β
∑
a,g

πgξgPb(a)nb(a, g) . (7)

The expected number of infectious red cell units donated

For simplicity, the population is structured into age cohorts, with the whole age cohort born at the start of
the calendar year, rather than throughout the year. This means that the total population size fluctuates
slightly over the year. We have N(t) = N exp(−Mφ(t)), where φ(t) = t − btc is the phase of the time.
At the end of the calendar year, the population has fallen by the number of births into each cohort N0,
and therefore M = ln N

N−N0
. In the British population, the overall annual death rate is M ≈ 1.3%pa.

In a population that has a constant birth rate and constant (albeit age-dependent) death rates, the
age-composition of the population is stationary over time. At the start of the calendar year, the number of

people of age a is proportional to the survival probability to that age, Na = N S(a)
s , where s =

∑A
a=0 S(a).

At any time t, the number of people aged a is Na(t) = Na exp [−µaφ(t)], where µa is the death rate at

age a, which is given by µa = − lnS(a+ 1|a) = − ln S(a+1)
S(a) .

We assume that all age-dependent rates (death, donation etc.) are constant per year, so that they
don’t depend on the exact age ac, but only on the count of years a = bacc. However, as infection can
occur at any exact age, not just at the birthday, for evaluating the number of secondary infections we
need to take into account the actual age at primary infection, as this determines when the rates change.

The expected number of infectious blood units donated by a person of genotype g who was infected
at age ac = a+ t0, where a is an integer and t0 ∈ [0; 1[, throughout their lifetime is given as

nb(acg) =

∫ ∞
0

α(t|acg)P (t|acg)dt , (8)

where α(t|acg) is the rate of donation of infectious blood units by a person aged ac + t, given infection
at age ac, and P (t|acg) is the probability that the person is alive at t0 + t, given they were infected at t0
when aged ac.
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Assuming that blood donations match the demand for transfusions,

α(t|acg) = N(t0 + t)τb
Φb(ac + t)

Nac+t
Gmin g(t)

∑
a′

Ψb(a
′)b(a′)

= N exp [−Mφ(t0 + t)] τb
Φb(a+ bt0 + tc)

Na+bt0+tc exp
(
−µa+bt0+tcφ(t0 + t)

) Gmin g(t)
∑
a′

Ψb(a
′)b(a′)

= sτb exp
[
(µa+bt0+tc −M)φ(t0 + t)

] Φb(a+ bt0 + tc)
S(a+ bt0 + tc)

Gmin g(t)
∑
a′

Ψb(a
′)b(a′) , (9)

where Gmin g(t) = G(t|κmin, ηg) is the cumulative distribution function of the γ-distributed time to
becoming infectious, giving the probability that the person has already entered the infectious stage at
time t after infection. It is given as

G(t|κ, η) = 1− exp(−ηt)
κ−1∑
k=0

(ηt)k

k!
, (10)

and we assume here that only the scale parameter η depends on the genotype. The mean of this distri-
bution is given by ∆ = κ/η.

As the time-dependence of the rate of donations (for constant age) over the year is an artifact of the
separation of the population into birth cohorts, we average the exponential factor over the year and get

α(t|acg) = sτb
eµa+bt0+tc−M − 1

µa+bt0+tc −M
Φb(a+ bt0 + tc)
S(a+ bt0 + tc)

Gmin g(t)
∑
a′

Ψb(a
′)b(a′) . (11)

The probability of being alive at time t after infection at age ac is given by

P (t|acg) = [ω2 + (1− ω2)(1−Gg(t))]S(ac + t|ac)

= [ω2 + (1− ω2)Zg(t)]
S(a+ bt0 + tc)

S(a)
exp [µat0] exp

[
−µa+bt0+tcφ(t0 + t)

]
, (12)

where ω2 is the probability of sub-clinical infection, and Gg(t) is the cumulative distribution function
of the incubation period (10), which is γ-distributed with the same shape parameter ηg, but a different
scale parameter κ ≥ κmin than the latent period. The first factor takes into account potential death from
disease for pre-clinically infected individuals, whereas the remaining term accounts for death from other
causes. Here, we have introduced the shorthand Zg(t) = 1−Gg(t).

The expected number of infectious red cell units donated throughout their lifetime by a person infected
when age ac = a+ t0 is given by

nb(acg) =

∫ ∞
0

α(t|acg)P (t|acg)dt

=
N

Na
τb
∑
a′

Ψb(a
′)b(a′)

∫ A−a+1−t0

0

(1− Zmin g(t)) [ω2 + (1− ω2)Zg(t)] Φb(a+ bt0 + tc)

· e
µa+bt0+tc−M − 1

µa+bt0+tc −M
eµat0e−µa+bt0+tcφ(t0+t)dt , (13)

whereas the expected number of infectious red cell units donated by a person infected at some point while
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they were aged between a and a+ 1 is

nb(ag) =

∫ 1

0

nb(ac)dt0

=
N

Na
τb
∑
a′

Ψb(a
′)b(a′)

∫ A+1−a

0

(1− Zmin g(t)) [ω2 + (1− ω2)Zg(t)]

·
∫ 1

0

Φb(a+ bt0 + tc)e
µa+bt0+tc−M − 1

µa+bt0+tc −M
eµat0e−µa+bt0+tcφ(t0+t)dt0 dt . (14)

Here, we set Φb(a > A) = 0 (note a is an integer, and therefore this relates to ac ≥ A + 1) in order to
ensure that no transmission can occur after reaching the largest possible age. In order to split up the
integral over t0, we write u = btc, with

bt0 + tc =

{
u 0 ≤ t0 < 1− φ(t)

u+ 1 1− φ(t) < t0 < 1
(15)

φ(t0 + t) =

{
t0 + t− u 0 ≤ t0 < 1− φ(t)

t0 + t− (u+ 1) 1− φ(t) < t0 < 1 .
(16)

We therefore have∫ 1

0

Φb(a+bt0 + tc)e
µa+bt0+tc−M − 1

µa+bt0+tc −M
eµat0e−µa+bt0+tcφ(t0+t)dt0

=Φb(a+ u)
eµa+u−M − 1

µa+u −M
e−µa+u(t−u)

∫ 1−φ(t)

0

e(µa−µa+u)t0dt0

+ Φb(a+ u+ 1)
eµa+u+1−M − 1

µa+u+1 −M
e−µa+u+1(t−(u+1))

∫ 1

1−φ(t)
e(µa−µa+u+1)t0dt0

=Φb(a+ u)
eµa+u−M − 1

µa+u −M
e−µa+u(t−u)

{
u+ 1− t µa = µa+u
e(µa−µa+u)(u+1−t)−1

µa−µa+u else

+ Φb(a+ u+ 1)
eµa+u+1−M − 1

µa+u+1 −M
e−µa+u+1(t−(u+1))

·

{
t− u µa = µa+u+1

eµa−µa+u+1−e(µa−µa+u+1)(u+1−t)

µa−µa+u+1
else

(17)
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Inserting this back we get

nb(ag) =
N

Na
τb
∑
a′

Ψb(a
′)b(a′)

A−a∑
u=0

[
Φb(a+ u)

eµa+u−M − 1

µa+u −M

·
∫ u+1

u

dt(1− Zmin g(t)) [ω2 + (1− ω2)Zg(t)] e
µa+u(u−t)

·

{
u+ 1− t µa+u = µa
e(µa−µa+u)(u+1−t)−1

µa−µa+u µa+u 6= µa

}

+ Φb(a+ u+ 1)
eµa+u+1−M − 1

µa+u+1 −M

·
∫ u+1

u

dt(1− Zmin g(t)) [ω2 + (1− ω2)Zg(t)] e
µa+u+1(u+1−t)

·

{
t− u µa+u+1 = µa
eµa−µa+u+1−e(µa−µa+u+1)(u+1−t)

µa−µa+u+1
µa+u+1 6= µa

}]

=
N

Na
τb
∑
a′

Ψb(a
′)b(a′)

A−a∑
u=0

[Hb(a+ u)I−(ag, u) +Hb(a+ u+ 1)I+(ag, u)] , (18)

where

Hb(u) = Φb(u)
eµu−M − 1

µu −M
(19)

and the integrals are I−(ag, u) and I+(ag, u).
Using the definition of Zg(t) and Gg(t), I±(ag, u) can be rewritten as the sum of integrals of the form

Km(θ, u) :=

∫ u+1

u

tme−θtdt (20)

with u ≥ 0. Depending on the values of θ and m, this evaluates to

Km(θ = 0, u) =
(u+ 1)m+1 − um+1

m+ 1
(21)

K0(θ 6= 0, u) =
1

θ

(
e−θu − e−θ(u+1)

)
(22)

Km>0(θ 6= 0, u) =
1

θ

(
ume−θu − (u+ 1)me−θ(u+1) +mKm−1(θ, u)

)
(23)

Defining

Lg(θ, u) :=

∫ u+1

u

eθ(u−t)(1− Zmin g(t)) [ωg + (1− ωg)Zg(t)] dt

= eθu

{
ωg

[
K0(θ, u)−

κmin−1∑
m=0

ηmg
m!

Km(θ + ηg, u)

]

+(1− ωg)

κ−1∑
m=0

ηmg
m!

Km(θ + ηg, u)−

κmin−1
κ−1∑

m,n=0

ηm+n
g

m!n!
Km+n(θ + 2ηg, u)


 , (24)
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and

Lgt(θ, u) :=

∫ u+1

u

teθ(u−t)(1− Zmin g(t)) [ωg + (1− ωg)Zg(t)] dt

= eθu

{
ωg

[
K1(θ, u)−

κmin−1∑
m=0

ηmg
m!

Km+1(θ + ηg, u)

]

+(1− ωg)

κ−1∑
m=0

ηmg
m!

Km+1(θ + ηg, u)−

κmin−1
κ−1∑

m,n=0

ηm+n
g

m!n!
Km+n+1(θ + 2ηg, u)


 , (25)

we have

I−(ag, u) =

{
(u+ 1)Lg(µa, u)− Lgt(µa, u) µa+u = µa

1
µa−µa+u [eµa−µa+uLg(µa, u)− Lg(µa+u, u)] µa+u 6= µa

(26)

and

I+(ag, u) =

{
eµa [Lgt(µa, u)− uL(µa, u)] µa+u+1 = µa

eµa

µa−µa+u+1
[Lg(µa+u+1, u)− Lg(µa, u)] µa+u+1 6= µa .

(27)
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