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1. The Where’s George dataset

As of January 15th, 2010 a total of 187, 925, 059 individual bills are being tracked at the website
www.wheresgeorge.com. Approximately 11.24% of those have had “hits”, i.e. they were reported a
second time at the site after initial entry. The current analysis is based on a set of N0 = 11, 950, 239
bills that were reported at least a second time. For each bill n we have a sequence of pairs of data

Bn = {Zn,i, Tn,i} i = 0, . . . , Ln n = 1, . . . , N0

of zip codes Zn,i and times Tn,i at which the bill was reported. Each Bn reflects a geographic
trajectory of a bill with Ln individual legs. In total, we have 14, 612, 391 single legs in our database.
Note that the majority (81.78%) of trajectories are single-legged reflecting a reporting probability of
≈ 20% during the lifetime of a bill.

The set of Bn represents the core dataset of our analysis. For each bill we have additional infor-
mation:

1. Denomination: $1, $2, $5, $10, $20, $50, or $100. The fraction of each denomination is depicted
in Table S1.

2. The Federal Reserve Bank code, A through L, corresponding to one of 12 of the United States
Federal Reserve Banks that issued the bill. The fraction of bills as a function of FRB origin is
provided in Table S2.

Table S1: Denominations in the WG dataset

Denomination $1 $2 $5 $10 $20 $50 $100

Number of bills 9,931,261 36,639 1,069,427 401,101 461,076 24,209 26,526
Fraction [%] 83.11 0.31 8.95 3.36 3.86 0.20 0.22

Table S2: Absolute number and relative fraction of bills based on Federal Reserve Bank

FRB Code Location Count Fraction [%]

A Boston 799,537 6.69
B New York City 1,325,942 11.10
C Philadephia 822,340 6.88
D Cleveland 661,278 5.53
E Richmond 948,516 7.94
F Atlanta 1,565,732 13.10
G Chicago 1,207,448 10.10
H St. Louis 472,930 3.96
I Minneapolis 360,194 3.01
J Kansas City 713,393 5.97
K Dallas 869,866 7.28
L San Francisco 2,203,063 18.44

We restrict the analysis to the lower 48 states and the District of Columbia (thus excluding Hawaii
and Alaska) and consider only legs with origin and destination locations in these states, reducing
the original dataset to 11, 759, 420 bills (98.40% of the original data) and 14, 376, 232 trajectory legs
(98.38%).
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The spatial resolution of the dataset is given by 41, 106 zip codes, with mean linear extent of 14 km.
The mean linear extent of the lower 48 states is 2, 842 km defining the bounds of the system. For each
zip code Zi we use centroid information to associate with each report a longitude/latitude location
x = (Θ, ϕ), such that each trajectory n corresponds to a sequence of geographic locations Xi with
i = 1, . . . , Ln:

tn : {Xn,0,∆Tn,1,Xn,1, . . . ,∆Tn,Ln ,Xn,Ln} with n = 1, . . . , N0 (1)

where Xn,0 is the initial entry location, and ∆Tn,i = Tn,i − Tn,i−1 are inter-report times.

1.1. Geographical distributions

Based on these trajectories we define the density of initial entries as

pIE(x) =
1

N

N∑
n=1

δ(x−Xn,0) (2)

and of reports as

pR(x) =
1

N

N∑
n=1

1

Ln

Ln∑
i=1

δ(x−Xn,i). (3)

In order to assess the spatial distribution of reports and initial entries and to quantify the correlation
with the population density we compute the number of reports and initial entries for each of the
M = 3, 109 counties in the lower 48 states. Defining for each county k a characteristic function

χk(x) =

{
1 if x ∈ Pk
0 otherwise

(4)

where Pk is the polygon defining the county’s interior, the number of reports and initial entries in
county k are given by

mR(k) = 〈χk〉R =

∫
χk(x) pR(x) dx and mIE(k) = 〈χk〉IE =

∫
χk(x) pIE(x) dx,

respectively. Figure S1 compares the distribution of reports mR(k), initial entries mIE(k) and the
population P (k) of the 3, 109 counties. As all three quantities are positive and vary over many orders
of magnitude, the maps depict log10(mR), log10(mIE) and log10(P ). Qualitatively, reports and initial
entries correlate strongly with the population density. Computing the correlation coefficient of the
logarithmic quantities yields c(R,P ) = 0.933 and c(IE, P ) = 0.819. Despite the expected increase of
mR(k) and mIE(k) with P (k), only the report count increases approximately linearly with population
size, whereas initial entries show a deviation for small populations. We believe that this deviation is
a consequence of the social difference between the subpopulation of “Georgers” that are responsible
for initiating bills and entering them into the system, “actively” playing the game, and the larger
group of people that randomly receive a bill and report it, “passively” participating. This hypothesis
could explain that areas with higher population densities contain a larger proportion of internet-savvy
communities that are inclined to become Georgers and initiate bills. In order to exclude a potential
bias caused by this effect we exclude all the legs in (5) that contain an initial entry as the origin,
i.e. we only investigate the reduced set

t2,n : {Xn,1,∆Tn,2,Xn,2, . . . ,∆Tn,Ln ,Xn,Ln} with n = 1, . . . , N0 (5)

that excludes the first legs of all tn. Excluding the first leg reduces the number of bills to 4, 743, 330.
However, the key results, e.g. the border structures discussed in the main text, are robust against
the inclusion of initial entries. Computing mobility networks based on either set, tn or t2,n does not
change the observed pattern significantly.
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Figure S1: The frequencies of reports (top) and initial entries (middle) correlate with the county population
(bottom) in the lower 48 states.
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Figure S2: The estimated probability p(r|t < τ) of a bill traversing a distance r in time t < τ where τ = 4 days.
In red a maximum likelihood fit of the the function p(r) ∼ r−(1+β) with β = 0.7056.

1.2. Distance and time: spatially averaged quantities

From t2,n we extract pairs of spatio-temporal leg distances {ds(Xn,i,Xn,i−1),∆Tn,i}, where ds(·, ·)
denotes the distance on a sphere (shorter segment of the great circle that passes through both
points). This type of dataset was first investigated in 2006 based on a much smaller core dataset of
bill trajectories [4]. In particular, the combined probability density (pdf)

p(r, t) = 〈δ (r − ds(Xn,i,Xn,i−1)) δ (t−∆Tn,i)〉 (6)

was estimated as well as marginal pdfs p(r) and p(t). The central finding of the 2006 study was
that p(r) ∼ r−(1+β) and that the time evolution of the density (6) can be described by a bi-fractional
diffusion equation. Here we reproduce some of the properties before we construct the mobility network
used in the main text. Figure S2 shows the short time pdf of a bill traversing a distance r in a time
t < τ where we chose τ = 4 days. Using maximum likelihood we find this function can be described
by a power-law

p(r) ∼ 1

r1+β
with β = 0.7056± 0.0659.

This power-law describes the dispersal characteristics on a population averaged level. The short time
distance pdf represents a dispersal kernel and for small times t approximates the instantaneous rate
of traversing a distance r.

Complementary to this, temporal aspects of the process can be revealed by computing the pdf for
the time t between reporting events given that these occur within a small radius r > r0. Figure S3
depicts p(t) for all legs with r < 10 km and a minimal inter-report time of tmin = 1 day. The
inter-report times are described well by a power-law moderated by an exponential factor

p(t) ∼ t−αe−t/T0 with T0 = 248± 27, α = 0.99± 0.05. (7)

The observed power-law decay ∼ t−1 for times t � T0 is intriguing. These type of decays have
been observed in a multitude of contexts involving human acitvity, for instance the time between
consecutive phone calls [10], emails [3] and the number of words between two identical words in
texts [1]. A consequence of this law is bursting behaviour, i.e. given an event occured at time t0
the probability rate that an event occurs immediately after the first is higher than expected from
ordinary Poisson statistics. This behavior is best illustrated by the so-called hazard function h(t)
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Figure S3: Inter-report time statistics. Left: the function p(t|r < r0) for r0 = 10 km. The observed function
can be accounted for by an initial algebraic decay t−1 moderated by an exponential function for large arguments.
The red dashed curved is a fit obtained maximizing likelihood. Center: The hazard function h(t) that represent
the instantaneous rate of an event at time t provided that an event occured at t = 0. The dashed lines represent
reporting rates of once per 2 weeks (red), once per month (green) and once per T0 = 248 days. Right: p(t)
for very short times. A zoom-in resolves daily oscillations modulated by the decay observed on the left. These
oscillations indicate that users tend to report to the website at the same time of the day with the highest
probability.

that quantifies the instantaneous probability rate of an event happening at t given that the last event
occured at t = 0. If we let

P (τ > t) =

∫ ∞
t

p(s) ds

be the cumulative probability that the second event occurs at a time τ later than t, the hazard
function is defined by

P (τ > t) = e−
∫ t
0 h(s) ds.

For a Poisson process with rate γ we have

h(t) = γ ⇒ P (τ > t) = e−γt.

The hazard function can be computed according to

h(t) = − d

dt
log [P (τ > t)] =

p(t)

P (τ > t)
.

Figure S3 depicts the function h(t) for inter-report times in the WG data. For small times (t < 1 week)
the probability rate for a report is of the order of one report per two weeks, which is also the expected
time between two reports in this time window. For larger times (t > 100 days) the constant value of
1/T0 is approached, equivalent to one report in 3/4 of a year. Possible explanations of the bursting
behaviour and the initial algebraic decay in p(t) are a strong behavioral heterogeneity of players that
participate in the game or an effective queueing in the system, i.e. bills may enter shops and intitially
have a comparatively high likelyhood of leaving, being “on top of the stack”. As time passes these
bills may “get stuck” and equilibrate to the long time scale present in the system.

1.3. Definition of the mobility network

From the trajectories defined by (5) and the characteristic functions of the counties (4) we construct
a matrix w̃ij that counts the number of legs which originate at county i and terminate at j,

w̃ij =
N∑
n=1

Ln∑
k=2

χi (Xn,k−1) χj (Xn,k) Θ(T −∆Tn,k)
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Figure S4: Symmetry of flux network w̃ij .

where Θ(·) is the Heaviside step-function. In order to exclude potential biases induced by initial
entries we ignore the first leg of all trajectories (k = 2 in the above sum). This choice is motivated
by the fact that the community of individuals that initiate bills might be less representative than
those that find bills and report them. Indications that this might have an effect are supported
by the different scaling behavior of initial entry frequencies with population as compared to report
frequencies with population. The factor Θ(T − ∆Tn,k) excludes legs that have an inter-event time
larger than time T . The matrix w̃ij need not to be symmetric, as the flux of bills from i→ j need not
equal those that travel j → i. However, as Fig. S4 indicates the flux matrix is statistically symmetric.
Plotting w̃ij agains w̃ji indicates a clear mean linear relationship. Since we base our analysis on the
flux of money between two given counties we symmetrize the network and use wij in our analysis
defined by

wij =
1

2
(w̃ij + w̃ji)

which of course also depends on the time threshold parameter T . Choosing the optimal value for T
is a trade-off between trying to estimate instantaneous flux, i.e. choosing T as small as possible, and
using as many legs as possible to decrease fluctuations, i.e. choosing large values for T . Choosing a
value for T < 30 days for instance rules out bills that visit a Federal Reserve Bank in between reports
in counties i and j, as bills that enter FRBs do dot return to circulation until approx. 3–4 weeks
after entering the FRB. As shown in Sec. 2, the probability of having an interfering visit to an FRB
remains very small even if T is increased to a few months. To make sure that our results do not
significantly change as the parameter T is varied we performed the analysis for various values of T
ranging from a few days to T = 1 year. The computed border structure does not significantly depend
on the value of T . Decreasing T thins out the network and reduces the overall connectivity, yet the
effects are similar to bootstrapping the network randomly, a process that also does not change our
results and is discussed in Sec. 3.3.
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2. Validity of currency flux as a proxy for human mobility

All US currency is manufactured in Washington, D.C. or Fort Worth, TX by the Bureau of Engraving
and Printing for the Department of the Treasury. Every bill is stamped as belonging to one of the 12
Federal Reserve banks, although in practice this only means that a bill originates from one of these
banks the first time it’s put into circulation. The Fed banks then sell currency to commercial banks,
and from there currency enters general circulation. A bill may circulate between banks, individuals,
and other businesses for some time before being returned to the Fed. When a bill is brought back to
one of the Feds, its fitness is evaluated (at whichever branch of the Fed receives the bill; currency is
not necessarily returned to the branch of origin to be evaluated). If it is unfit the bill is destroyed,
and if it is fit, the bill is placed into a first in, first out queue. As regional banks require currency,
the Fed draws bills out of the queue to fill this demand and distributes them back into circulation.

The cash services provided by the FRB system are used heavily by commercial banks: every day,
the Federal Reserve Bank of New York alone processes some 20 million bills and destroys about a
quarter of them.1 The FRB reports that approximately 35% of all currency deposited in the system
is destroyed,2 and the Bureau of Engraving and Printing produces about 38 million new bills every
day to satisfy demand for currency.3 This large amount of currency moving through the arms of the
FRB might have a strong effect on the geographic circulation of dollar bills. However, the number of
bills in circulation is measured in the tens of billions (cf. Table S3), and in this section we demonstrate
that in spite of the volume of currency processed by the Fed, measuring events such as this in our
database is extremely unlikely.

Denomination ($) 1 5 10 20 50 100

Number of bills (billions) 7.7 1.8 1.5 4.9 1.1 3.8

Table S3: Amount of bills in circulation December 2000. http://www.federalreserve.gov/

paymentsystems/coin_currcircvolume.htm

2.1. Time scale analysis

A general indication for why a bias from the Federal Reserve is unlikely to appear in our data comes
from considering single dollar bills, which account for the largest portion of the dataset (see Table S1).
A $1 bill typically lasts 1.8 years and visits the Fed twice in its lifetime, being destroyed the second
time. This means that the average time between entries into the Fed is about 11 months, much longer
than the typical inter-report time for $1 bills. Of course different denominations behave differently
and this is explored in more detail below and later in Sec. 2.2, but here we describe how systematically
applying time thresholds to our data can be used to reduce any possible bias introduced by the Fed.

We estimate the fraction of bill trajectory legs in our dataset that have not passed through the
Federal Reserve. Each leg takes some time T , and the probability that the bill did not pass through
the Fed in this time we call p0(T ). Then the fraction of all legs that have not passed through the
Fed is given by

f =

∫ ∞
0

p0(T ) p(T ) dT

Here p(T ) is the probability density function of leg times; so the fraction of bills not passing through
the Fed is the probability that one particular leg time T does not pass through, times the probability
of observing this leg time, integrated over all possible leg times.

1http://www.newyorkfed.org/aboutthefed/fedpoint/fed11.html
2http://www.frbservices.org/operations/currency/currency.html
3http://www.ustreas.gov/education/faq/currency/production.shtml
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Now we consider restricting the dataset to a time window τ ; that is, we only consider legs with
T ≤ τ , and ask what fraction of these bills have not passed through the Fed. p0 is as before, and
we replace the complete pdf with a truncated pdf pτ (T ) and write f(τ) =

∫∞
0 p0(T ) pτ (T ) dT . The

truncated pdf is calculated from the complete pdf:

pτ (T ) =

{
p(T )/

∫ τ
0 p(T ) dT T ≤ τ

0 τ < T

Substituting this in we find

f(τ) =

∫ τ
0 p0(T ) p(T ) dT∫ τ

0 p(T ) dT

The inter-report time distribution is obtained from our data set, and we develop a simple model for
p0.

A bill is either in the Fed or in circulation, and we can calculate the average time between entries
into the Fed based on the average lifetime of a bill and the average number of times a bill visits the
Fed before being destroyed. Let L be the average bill lifetime and N the number of times it returns
to the Fed; then the average time between entries to the Fed is

T− =
L

N − 1

0 L
In circulation

In Fed

T-

The denominator is due to the fact that the last time a bill enters the Fed, it is destroyed. Note that
T− is completely independent of the average time a bill spends in the Fed; only the average lifetime
and average number of Fed entries matter. In general, we can say that the average time between Fed
entries is the average time spent at the Fed plus average time spent in circulation, T− = Tf + Tc.

As a worst-case estimate we begin by assuming that Fed events take very little time, T− ≈ Tc.
Assuming that entering the Fed is a Poisson process, then given an inter-report time of T the
probability that there was not a Fed event during this time is

p0(T ) = e−γT

where γ is the rate at which bills enter the Fed, given by 1/T−.
Alternatively, to estimate p0 we could take into account the fact that the Fed does not process bills

almost instantaneously. Rather it requires a considerable amount of time for a bill to be received
by the Fed, processed, and recirculated back to a regional bank. Let Tf be the minimum amount of
time a bill spends inside the Fed; then in this case we have

p0(T ) =

{
1 T ≤ Tf
e−γ(T−Tf ) Tf < T

The amount of time a bill may get “stuck” at the Fed varies according to the time of the year, the
denomination of the bill, and other factors. However, bills are never recirculated within three weeks
of initially being received.

These two possible models for p0 lead to different estimates of f(τ), both parametrized on the
average lifetime of a bill and average number of Fed entries. These parameters vary substantially
over the different denominations, and here we present a detailed investigation for $1 bills and $20 bills,
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Table S4: Average lifetimes of the various denominations (http://www.federalreserve.gov/generalinfo/
faq/faqcur.htm)

Denomination ($) 1 5 10 20 50 100

Average Lifetime (days) 630 480 540 720 1650 2670
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Figure S5: Fraction of trajectories that have not passed through the Fed and fraction of trajectories that
remain given a time window τ . For $1 bills we use L = 630, N = 2 (e.g. approximately half of the $1 bills
entering the Chicago Fed are destroyed), and for $20 bills we use L = 720, N = 4 (cf. Tab. S4). For both
models with delay we use Tf = 21. (This number is conservative; it could be much higher, which would move
the green curve further right.)

as they account for the largest portion of our dataset and the largest portion of bills in circulation.
In Figure S5 the blue lines indicated the fraction of bills that have not passed through the Fed using
the simple model with no sticking time, the green lines are the model with a sticking time, and the
red lines indicate the fraction of all of the trajectories in our dataset that remain after thresholding
at the given time window. The graphs indicate that, for example, 80% of $20 bill trajectories take
less than one year (τ = 365), and of those, about 70% have not passed through the Fed. For the $1
bills the situation is even more favorable. After a year, 90% of trajectories remain, and 88% of those
have not passed through the Fed.

Although the graphs in Figure S5 indicate that, in general, a very high proportion of our dataset
is unaffected by the Fed, they also make it clear that, as we reduce the time window, we will
systematically filter out those legs that are affected by the Fed. We therefore plot the correlation
between link weights in the full, time-unrestricted network and various time-thresholded networks,
where links are constructed using only bill trajectories with T ≤ τ . Figure S6 (left) shows that,
although decreasing the time window certainly affects the strength of links in the Where’s George
network, it does this in a predictable way. If the actions of the Fed disproportionately increased the
strength of links in and around the reserve districts, then these links should be disproportionately
weakened by reducing the time window. However, we do not observe this effect; on the contrary,
reducing the time window reduces the strength of all links in the network proportionately. Note that
the blue line in Figure S6 (left) indicate a time window inside of which it is impossible for the Fed to
introduce any bias whatsoever into the link weights, and yet here the link weights are proportional
to the weights of the unrestricted network as well.

An alternative, albeit unlikely interpretation of these results is that for every pair of counties the
flux of currency due to relocation by banks is exactly proportional to flux of currency due to human
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Figure S6: Comparing the unrestricted network to various time-thresholded networks, for all denominations
combined. The nearly linear relationship on a doubly-logarithmic scale indicates that the time-thresholded
networks are proportional to the unrestricted network.

mobility, that is
wij = whumans

ij + wbanks
ij = (1 +A)whumans

ij .

This would have no effect on the results presented in this paper, since both methods used here are
insensitive to scaling.

Although the Federal Reserve System is certainly responsible for processing a tremendous number
of bills and undoubtedly affects the geographic circulation of money, the timescales involved generally
rule out the possibility that this biases our observations. We constructed a model based on reasonable
assumptions that gives a lower bound for the fraction of trajectories we observe that are affected by
the Fed, and find that this already shows that there should not be a strong bias. Moreover, we find
by correlation of the full network with time thresholded networks that the actual bias present in our
data is far less than what the worst-case model predicts.
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2.2. Denomination analysis

Furthermore, we check the behavior of different denominations. The distribution of various denomi-
nations is listed in Table S1. The vast majority of bills are singles, yet a small but significant number
of bills in the WG dataset are of higher denomination. The exception is the $2 bill that is rare and
plays a more dominant role as a collectors item than as a means for cash payments. As various
denominations serve a different purpose in circulation we expect to see differences in the statistical
properties. The figure below is a schematic showing the important features of currency circulation.

Businesses

Banks

People

Federal 
Reserve 
System

Consider how the different denominations of currency are typically used: larger denominations are
used by people to purchase items from businesses. A customer enters, makes a purchase with some
amount of currency, and receives smaller-denomination bills in return (along with a good or service).
This common scenario, repeated many times, means that businesses have a large demand for low-
denomination bills that is not satisfied by customers, only by banks, and that people have a demand
for high-denomination currency that is generally satisfied by banks, not businesses. This means that,
for example, $20 bills are likely to move through this diagram in a generally clockwise direction,
passing from banks to individuals to businesses and back to banks, while $1 bills likely pass back and
forth between people and businesses many times before returning to a bank. Furthermore, the more
frequently a bill returns to a bank, the more likely it is sent to the Fed, and the more frequently a
bill is given to an individual, the more likely the bill is reported on wheresgeorge.com.

Analysing the statistics for each denomination can reveal to what extent business-to-business trans-
port of money impacts on the spatial relocation of currency and to what extent this generates the
flux matrix wij (instead of humans carrying currency from place to place, which is a key assumption
of our approach). If the data indicate that higher denominations exhibit a higher probability of
entering banks or, equivalently, spend less time in peoples’ hands, it is reasonable to assume that
this difference in local circulation patterns would also show a trace in the spatial patterns, i.e. the
statistics of distances traveled.

In order to investigate differences and similarities in local circulation patterns we compute the inter-
report time statistics for each denomination (except $2 bills); the results are depicted in Fig. S7. We
compute the mean and variance of inter-report times as well as the cumulative probability P (∆T >
t|$) that an inter-report time ∆T is larger than a given time t. The results indicate that smaller
denominations do indeed not only exhibit identical properties in their subgroup but they also differ
significantly from those of the larger denominations.

Note that the difference in p(∆T > t|$) cannot be attributed to the smaller size of samples in
the higher denominations. For example the number of $10 bills and $20 bills are approximately the
same, nevertheless p(∆T > t|$) is quite different for these two denominations. We believe that this
temporal difference in smaller denominations on one hand and large denominations on the other is
caused by the different local paths of circulation these bills take. Larger bills have a much smaller
likelihood of crossing the counter in both directions and tend to take a more circular path from banks
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Figure S7: Inter-report time statistics for the different denominations in the dataset. Left: The relative mean
inter-report time. The small denominations $1, $5 and $10 exhibit approx. the same mean inter-report time
that is also significantly smaller than that of the higher denominations. Right: The cdf P (∆T > t|$) for
each denomination. We observe again a power-law moderated by an exponential for large t. Interestingly, the
smaller denominations exibit almost identical pdfs whereas higher denominations deviate.
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Figure S8: The short time pdf p(r|$) for all denominations except the $2 bills. All denominations exhibit a
power-law decay with an exponent consistent with that of the entire population of bills.

to people to shops to banks etc. If this is the case, and business-to-business relocation of currency
plays a more dominant role in the spatial dispersal of currency, then we expect to see a different
behavior in spatial statistics of small denominations on one hand and large denominations on the
other.

Figure S8 depicts the short time distance pdf p(r|$) for all denominations. Despite significant dif-
ferences in the distribution of inter-report times in local circulations, all denominations exhibit similar
functional shapes of p(r|$). This result speaks against the hypothesis that geographic relocation is
dominated by business-to-business transportation of currency and we believe that the universal shape
of p(r|$) is yet another reason to assume that the dominant factor in the flux of currency is human
mobility.
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3. Ensembles of high-modularity partitions

3.1. Finding optimal partitions

Our method relies on finding several different high-modularity partitions, which restricts the range of
applicable algorithms. For example, the deterministic divisive algorithms described by Newman and
Girvan [14] cannot find several different local maxima of the modularity function. In contrast, Monte
Carlo algorithms return different partitions with probabilities that monotonically increase with the
corresponding modularity values, one of which is the simulated annealing algorithm described by
Guimerà and Amaral [12]. Additionally, this algorithm has been found to be the best-performing in
terms of correctly identifying modules in networks with artificial community structure in a survey by
Danon et al. [5], which lead us to choose this algorithm for our work.

The partition vector P is initialized such that each of the N nodes is in its own module, Pi = i.
Alternatively, one could randomly assign each node to one of a few modules to form the initial
partition. We found, however, that in this case the algorithm will split these few large modules into
a large number of very small modules before slowly merging them into the final result. Since splits
of large modules, involving a recursive simulated annealing run, are computationally very expensive,
we avoid them by starting with a partition of single-node modules.

A small modification of the partition is then made (see below) to obtain a new partition P ′ and
its effect on the modularity value, ∆Q = Q(P ′) − Q(P ). If ∆Q > 0, the new partition is better
than the old one and we replace P = P ′. If ∆Q < 0, the partition is only accepted with probability
pT (∆Q) = exp(∆Q/T ), where T is a “temperature” that controls the typical penalty on Q we are
willing to accept with the new partition P ′.

This procedure is repeated a number of times, initially with a high T = T0 accepting modifications
with large negative impact on modularity and therefore allowing to sample multiple local maxima.
After O(N2) modifications, the temperature is lowered by a cooling factor c. When T is small enough,
worse partitions are not accepted anymore and the partition P has “annealed” into a local maxima
of the modularity landscape Q(·).

During each temperature step, we intersperse f N2 local with f N global modifications of the
partitions, f being a parameter. A local modification is a switch of one node to another, randomly
selected, module, while a global modification can be a merge of two or a split of one randomly
selected module. Finding a suitable split of a module that is not immediately rejected is done by
recursively running a simplified version of the simulated annealing algorithm on it: The module in
question is extracted and treated as an independent network, initially randomly partitioned into two
modules. Only local modifications are allowed while annealing this bipartition into a local modularity
maximum. Afterwards, the split module is replaced into the full network and evaluated against the
modularity value of the full partition.

We observed that the global structure of the partition is found quickly by the algorithm and
mostly only local modifications are accepted at low temperatures. Since the split operations are
computationally intensive, we therefore track the number of rejected split modifications in each
temperature step and reduce the probability of future trials if that number is high.

To generate the large ensemble of partitions, we used T0 = 2.5 · 10−4 as initial temperature,
c = 0.75 as the cooling factor, and f = 0.05. We abort the procedure and accept the partition as
“optimal” if no better partition is found in three consecutive temperature steps. The parameters are
less conservative than those proposed in [12], but we found the algorithm to perform very well and
in acceptable runtime with this configuration.

3.2. Superposition of partitions and limitations of modularity

As described in the main text, the key feature of our method is the ability to extract statistically
significant properties of an ensemble of partitions, instead of focusing on a single realization. This is
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Figure S9: Two networks that expose the resolution limit problem with modularity [9]. The shaded areas
indicate an artificial geography for nicer visualization of the boundaries in the next figures. Left: A ring of 34
cliques, each of 6 nodes and connected to their neighbors by single links. Right: A network of two 20-node
cliques and two five-node cliques.

motivated by the finding that many partitions may yield similarly high modularity values, yet differ
significantly in structure. In fact, it is straightforward to construct networks of which several distinct
partitions with equal modularity value exist. This degeneracy of modularity was independently found
by Good et al. [11] and marked as a drawback of the modularity measure.

Our proposed method combines an ensemble of partitions by focusing on the boundaries of a parti-
tion (“Which adjacent nodes are separated into different modules?”) rather than its volumes (“Which
nodes are grouped together?”), and then computing for each boundary the fraction of partitions in
which it exists. Because we are interested in geographically embedded networks and modules are vir-
tually always spatially compact in our case, we can restrict ourselves to boundaries that are also real
geographical borders between nodes. However, the idea can be easily generalized to non-geographical
networks, at the expense of convenient straight-forward visualization. Since all partitions in the
ensemble have a high modularity value, this method highlights similarities and differences in degen-
erated partitions, yielding a unique “partition” (or to be more precise, a map) of the network and
thus overcoming the degeneracy problem.

Another drawback in the concept of modularity is the so-called resolution limit, as reported by
Fortunato and Barthélemy [9]. The authors present two artificial, unweighted networks that exhibit
an intuitively very clear community structure, yet partitions exist that do not reflect this structure
but have a higher modularity value than the partition that does. In particular, these networks are
constructed by connecting multiple fully connected graphs (“cliques”) with single links (cf. Fig. S9).
It is clear that every clique should be grouped into one module, but the best partition according
to modularity will group multiple cliques together. This only occurs if the cliques are small (in
terms of number of links) compared to the full network, thus the modularity measure cannot detect
communities below a certain resolution limit.

In our method every single partition obviously suffers from this limitation as well. However, the
resolution limit can be alleviated by looking at an ensemble, if enough small modules exist to create
degeneracies. To illustrate this, we applied our method to the two example networks from Ref. [9].
Figure S9(left) shows a ring of 34 6-cliques, all connected to their neighbors by a single link. The
intuitive partition in which each clique is in its own module has modularity Qreal = 0.9081 while a
partition that groups pairs of cliques together has Qopt = 0.9099. However, two distinct partitions
exist that group pairs of cliques. Thus, an ensemble of optimal partitions will be composed out of
those two partitions, yielding a boundary map in which every boundary between two cliques appears
in 50% of the ensemble partitions. For nicer visualization, we created an artificial geography for
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Figure S10: Left: The optimal partition in the clique ring groups pairs of cliques together (the same color is
used for multiple modules). Center: Example of a partition found by the modularity optimization algorithm.
Right: Boundaries in the clique ring are found between every clique, not just every other. Color codes the
fraction of partitions in which the boundary was found.

Figure S11: Boundaries found in the clique network shown in Fig. S9(right). Our algorithm is not able to find
a boundary between the two small cliques.

this network and computed partitions and boundaries, shown in Fig. S10. Due to the nature of our
algorithm, the resulting partitions contain a few n-tuples of cliques and single-clique modules that
have not been split or merged into perfect clique-pairs before the termination criterion, and thus the
observed boundaries are stronger than expected.

The second network proposed in Ref. [9] is constructed from two 20-cliques and two 5-cliques
(cf. Fig. S9, right). Here, the two smaller cliques are merged into one module by the optimal
partition (Qopt = 0.5426), although one would again expect each of them to be in its own module
(Qreal = 0.5416). Our method is not able to capture the intuitive community structure in this case
(cf. Fig. S11), because no degeneracy exists (the partitions in which only one of the small cliques are
grouped with the large one, but not the other, are too far from the optimum to be produced by the
algorithm, Qdeg = 0.4959).

If we extend the network such that four small cliques exist, the partition which groups all cliques
into their own modules is still suboptimal to any partition that groups together more than one of the

Figure S12: Modification of the clique network in Fig. S9(right). Because there are multiple high-modularity
partitions that group the smaller cliques into pairs, our method can detect the correct community structure
in this case.
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small cliques, but degeneracies are created and the ensemble of partitions reveals the true community
structure in this network (cf. Fig. S12).

In conclusion, our method is able to dissolve both the degeneracy and resolution limit problems
if enough small modules exist to create degeneracies. In fact, we observe small “building blocks” in
the WG data that are not seen in single partitions but emerge from the superposition of a partition
ensemble.

3.3. Bootstrapping the Where’s George data

In order to test the robustness of our method against random data removal, we performed the fol-
lowing bootstrapping analysis. Starting with the full dollar bill dataset we have, and the resulting
network weight matrix W with elements wij , we randomly remove single dollar bill reports until the
total flux f =

∑
i,j wij is reduced by a factor γ. Using this method we constructed several networks

for 0 ≤ γ ≤ 0.95 and computed an ensemble of 100 partitions for every value of γ, using the sim-
ulated annealing algorithm described in Sec. 3.1. We find that the modularity value is unaffected
by bootstrapping even if 95% of the total flux is removed, although the number of modules in each
partitions rises as the network is thinned out more than 85% (cf. Fig. S13). Also, the boundary struc-
ture emerging from superposition of all partitions is very robust under this procedure (cf. Fig. S14).
At 20% of the original flux (γ = 0.8), approximately equal in volume to the long-range subnetwork
discussed in the main text, virtually all of the boundaries found in the complete network are still
identified, although the sparsity of the data evokes some singular counties. Even with only 5% of the
flux, when boundaries become more fuzzy, some of the original structures are detected.
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Figure S13: Distributions of modularity values and number of modules for an ensemble of 100 partitions
computed for each value of the bootstrapping parameter γ. The dashed line corresponds to 78.2%, the amount
of flux ignored by removing all links shorter than 400 km.
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Figure S14: Linear superposition of 100 partitions for four different values of the bootstrapping parameter γ,
color-coded according to the fraction of partitions they appear in.
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Figure S15: Left: χ2 goodness-of-fit for different parameters of the gravity law. The minimum is at
(α, µ) = (0.96, 0.3). Right: Distributions of modularity values for an ensemble of 80 partitions each com-
puted for snapshots of the model network at different connectivities. The dashed line corresponds to 0.0765,
the connectivity of the real-data mobility network.

4. Gravity as a null model

This section provides details on how to we constructed the gravity model network that is referred to
in the main text. In gravity models the interaction strength between a collection of sub-populations
with geographic positions xi, sizes Ni (obtained from census data4), and distances dij = ||xi − xj || is
given by

pij ∝
Nα
i N

β
j

d1+µij

in which α, β and µ are the parameters.
To create a model network comparable to our data, we first compute pij for all counties i and j

in the continental U.S. and normalize them such that
∑

i,j pij = 1. We then interpret these values
as probabilities for a travel event to happen between the two counties (or, speaking in terms of the
original data source, a dollar bill report). Thus, starting with all-zero link weights wij , we repeatedly
draw a pair of nodes according to pij and increase the corresponding wij by one, until approximately
the same connectivity (number of non-zero wij) as in the real-data network is reached.

We generated gravity networks for different parameter values and gauged them against our real
data by comparing the distributions of first-order network statistics to find the best fit to our data.
Distributions have been compared by log-binning the values and computing the χ2 statistic

χ2 =
n∑
i

(NG
i −NR

i )2

NR
i

where n is the number of bins and NG
i (NR

i ) is the number of values from the gravity (real-data)
network in bin i.

Our real data is symmetric and node fluxes are proportional to population sizes, therefore we
assume α = β ≈ 1 to narrow down the search volume in parameter space. We computed χ2 for
the distribution of link weights, node fluxes and geographical distances and used the sum of them,
χ2
w + χ2

f + χ2
d, as the goodness-of-it measure. Figure S15(left) shows this quantity for (α, µ) ∈

[0.8, 1.2] × [−0.4, 0.9], from which we concluded that α = β = 0.96 and µ = 0.3 are the best
parameter choices. The resulting network and first-order statistics are shown in Fig. S16.

4http://www.census.gov
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Figure S16: Comparison of the real-data network (top left) and the gravity model network with α = β = 0.96
and µ = 0.3 (top right). The bottom plot shows the distributions of geographical distances d, link weights w
and node fluxes f in the real-data network (blue lines) and the gravity model (green lines).

Similar to the bootstrapping procedure described in Sec. 3.3, we tested the robustness of the
community structure of the model network by generating snapshots of the network at different con-
nectivities and computing an ensemble of 80 high-modularity partitions for each snapshot. We found
that the modularity statistics are stable around the target connectivity of 0.0765 (cf. Fig. S15(right)).
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5. Shortest-path tree clustering

5.1. Computing shortest-path trees

The shortest path from vertex i to vertex j is the series of edges that minimizes the total distance
[6]. The distance along an edge for us is the inverse of the edge weight, as a highly-weighted edge
indicates that two vertices are effectively proximal. (There are no edges with an infinite distance,
because we do not define an edge between vertices if there is zero weight.)

The shortest-path tree rooted at vertex i is the union of all shortest paths between i and the rest of
the vertices in the graph. We use the MATLAB interface5 to the Boost Graph Library6 to compute
shortest-path trees. To prevent random fluctuations in our data from overwhelming the signal, we
add a weak link between neighboring counties.

5.2. Measuring tree distance

A shortest-path tree can be easily represented as a vector of vertex labels T = [tk], k = 1 . . . N , such
that tk is the label of the parent of vertex k, with a special symbol (perhaps 0) used to indicate
the root. There are no disconnected nodes in the mobility network, thus each tree vector represents
a single tree and not a forest. This representation lends itself to straightforward and meaningful
comparisons between two trees.

We define two related measures of the dissimilarity between two trees. The first, called parent
dissimilarity, asks the question, how many of the vertices in TA do not have the same parent in
TB? We denote this by zp(TA, TB), and it is exactly the general Hamming distance of two symbol
sequences, that is, the number of places where corresponding labels in TA and TB do not match.
The second, called overlap dissimilarity, asks the question, how many edges do the two trees not
share? It is defined as zo(TA, TB) = smax − s(TA, TB). Here, smax is the largest number of edges
two trees could share, which is the number of vertices less one (since the root does not contribute an
edge). s(TA, TB) is the number of edges that TA and TB do share, and where zp asks essentially the
same question considering edges to be directed, zo considers edges to be undirected. Also note that
although we consider only the topology of trees when measuring their dissimilarity, the topology is
determined by the weight of edges in the original graph and thus the mobility dynamics.

We compute both measures for each distinct pair of trees in our network and find that they are
highly correlated (the Pearson correlation coefficient of the two sets is 0.9980). For this reason, and
because of the more straightforward interpretation, we focus exclusively on zp in the main text.

To test the stability of this measure we also added various amounts of noise to the original weight
matrix; for example, adding 1% noise means that we adjusted each entry by a random number such
that its perturbed value is within 1% of its original value. We then compute the set of shortest-path
trees for the perturbed weight matrix, calculate the tree dissimilarities, and then compute the Pearson
correlation of the original dissimilarities and the perturbed. The results (0.9995 for 0.1% noise, 0.9984
for 1% noise, 0.9937 for 5% noise) indicate the method is robust against small perturbations, and
in addition we do not observe significant changes in the structure of borders determined by the
perturbed matrices.

5.3. Hierarchical clustering

The measures described above produce a dissimilarity matrix well-suited for use with hierarchical
clustering [8]. This technique iteratively groups data points together into clusters that are less
and less similar; it begins by identifying the two points with the lowest dissimilarity and grouping
them together, then finding the next-most-similar data point or group, and so on. When it is

5http://www.stanford.edu/~dgleich/programs/matlab_bgl/
6http://www.boost.org/doc/libs/1_41_0/libs/graph/doc/index.html
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Linkage zp(Ti, Tj) 1/wij
single 0.6584 0.1883
average 0.8048 0.3757
complete 0.7197 0.1400

Table S5: Cophenetic correlation coefficients [15] for various linkage functions using parent dissimilarity of
trees and inverse weight of links

necessary to compare the dissimilarity of one point (or group of points) with another group of points,
a linkage function is used. There are several commonly-used linkage functions; we compute single
linkages (comparing the shortest distance between two groups), average linkages (the average distance
between two groups), and complete linkages (the greatest distance between two groups) and find that
the average linkage produces the best fit to our data (cf. Table S5).

The result of the hierarchical clustering algorithm is a linkage structure that can be represented
graphically with a dendrogram (Fig. S17). The radial lines in the dendrogram represent vertices in
our network or groups of vertices, and the arcs represent a link that joins groups together in the
hierarchy. The nearer an arc is to the center of the circle, the greater the dissimilarity between the
groups joined by the arc.

Each arc corresponds to a geographic border between a set of counties, and the closer the arc is
to the center of the circle, the more significant the border. At the outermost level, the dendrogram
necessarily puts a border around each individual county, and we threshold at 30% of the height of
the tree (corresponding to a dissimilarity zp = 41.6019) for the analysis in the main text.

As you can see in Fig. S18, the groups identified by this procedure are spatially coherent, but may
be divided into spatially disjoint regions at certain heights in the dendrogram.

Hierarchical clustering is also sometimes applied directly to the inverse of the weights, 1/wij . We
have investigated this method as well and find that it has several shortcomings. First, to apply
a hierarchical clustering algorithm requires computing a dissimilarity for every pair of data points;
since many pairs of counties are not directly connected by a link in our network (wij is zero), the
inverse clearly does not exist and it is consequently necessary to add some noise to the weight matrix
at the very first step, representing pairs of vertices that are ‘extremely distant’ but not disconnected.
Second, the linkage structures produced from this approach fit the data poorly (cf. Table S5). Last,
one can see by visual inspection of the dendrogram that this approach does not yield significant
information. Comparing the dendrograms for the zp and 1/w matrix, we see that in the shortest-
path tree approach most of the links that appear higher in the tree (closer to the center) are linking
together two groups that are strongly dissimilar from one another (seen by comparing the height of
the parent link to the heights of the children links). In the inverse weight method, this is not true:
links high in the tree are linking groups that are quite similar; that is, inverse weight clustering does
not identify groups of strongly dissimilar vertices.
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Figure S17: Hierarchical clustering with parent dissimilarity using average linkages; colors correspond to a
particular partition depicted in Fig. S18

Figure S18: The geographic partition determined by cutting the dendrogram of Fig. S17 at a height of 95
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Figure S19: Hierarchical clustering of the inverse weight matrix with noise using average linkages
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6. Significance and comparison of border structures

In this section, we describe how to compare boundary networks defined on a planar graph, in our case
the county network of the continental US excluding Alaska. A boundary network b is simply given
by assigning a nonnegative number w to each edge between adjacent counties: If the two counties
are not divided by b then w = 0. Otherwise w > 0 implies that the border shared between the two
counties has the strength w. In the main text, we described how to generate such a boundary network
by superposition of many partitions of the Where’s George money travel network, see Figure 2 in the
main text. We denote this boundary network by the modularity boundaries bM .

6.1. Measuring overlap of two boundary networks

We want to quantify how much information the modularity boundaries bM shares with e.g. a state
network, a random network or a boundary network generated with another method.

For this we essentially need to determine the cross-correlation between two boundary networks
b and b′. However cross-correlation itself is not well-suited for dealing with the non-negativity of
the edge weightings, so we calculate a non-centered version of it. The absolute cross-correlation of
the two boundary networks b and b′ is then given by the normalized scalar product of their edge
weightings, i.e. by

a(b, b′) :=
(1/|E|)

∑
e∈E b(e)b

′(e)√
(1/|E|)

∑
e∈E b(e)

2
√

(1/|E|)
∑

e∈E b
′(e)2

where E denotes the set of edges connecting adjacent counties. This quantity lies between 0 and 1
and equals 1 if and only if the two boundaries are identical up to scaling.

Apart from the upper bound, this quantity however is difficult to judge. In particular, we cannot
compare right away two cross-correlations between different networks since a(·, ·) might depend on
the number of clusters and inhomogeneity of weights etc. We avoid finding a direct interpretation
of the absolute cross-correlation by instead considering deviation of observed values against cross-
correlations with a null model.

Such null models are used to tell random occurrences of structures from true information. One
typically wants to keep some statistics of the network fixed while at the same time randomly sampling
from its representational class. This results in the notion of random graphs with certain additional
properties such as Erdös-Rényi [7] or Barabási-Albert [2]. The key idea is to generate a random
network preserving planarity and possible additional information by using the original structure and
iteratively changing it by a random local modification. For instance for unweighted networks, a
random graph can be generated by ‘rewiring’: two distinct edges and two different vertices contained
in either of the two are randomly selected and then swapped. Clearly this operation keeps both
degree distributions fixed. After a certain number of iterations, the thus generated Markov chain
produces independent samples of the underlying random graph with given degree distributions [13].
This concept has been generalized to weighted graphs [16]; in this case it is debatable whether to
swap the whole weighted edge or to split up the weight.

In our case we search for a randomization of a boundary network i.e. of a planar, weighted graph.
Rewiring as above is not possible since it would destroy planarity. Instead we propose to locally
modify the graph at a random county: select a subpath of its boundary and flip it to its complement.
In the case of non trivial weights, we reassign a random number between 0 and the minimal edge
weight on the subpath. We have illustrated this procedure on an example in Fig. S20.

This procedure is now repeated multiple times until sufficiently decorrelated samples from the
original network are produced. In practice, it is common to choose iterations in the range of the
number of edges in the network or more.
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Figure S20: Local modification of a planar graph. We select the bottom left county to modify. The selected
path to modify is shown in bold in the left figure. Its minimal weight is 1. This is subtracted in the right hand
figure, where the complementary path is shown.

Figure S21: Randomization of the modularity boundary network bM . The original network and the first 900
iterations are shown.
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Figure S22: Absolute cross-correlation of the randomized network after the given number of iterations with
the modularity boundary network bM .
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Figure S23: Absolute cross-correlation of state and county boundaries when compared with a null model based
on the modularity boundary network bM .
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6.2. Randomization of the mean partition boundary of the Where’s George network

In order to test for significances of calculated similarities, we build a random model of the mean
partition boundary by generating 1000 random networks using the above algorithm with > 15000
successful iterations for each random network. The corresponding maps for the first 1000 iterations
are shown in Fig. S21. Clearly the original structure in the boundary network is increasingly diluted,
and after > 10000 iterations becomes stably random.

This can be seen by calculating the absolute cross-correlation a(b, bR) of the modularity boundary
network bM with the random networks bR, when increasing the number of iterations, see Fig. S22.
We observe convergence to roughly 0.5 after about 10000 steps. This lies well in the range of random
correlation with a mean of 0.49 and a standard deviation of 0.028, see histogram in Fig. S23(a). This
implies that the randomization procedure converges to a set of random boundary networks, which
can now be used to put calculated autocorrelations into perspective against this null model.

6.3. Significances when comparing boundary networks with the null model

We describe and quantify overlap of the estimated modularity boundaries bM with other political
or social boundaries. As described before, we can quantify overlap by determining the absolute
cross-correlation a(b, bM ). In order to determine interpretable numbers, we compare this value to
correlations with random boundaries bR from a null model.

We now determine significance of coincidence of the modularity boundary network bM and the
SPT boundary network bS with

• modularity boundaries bM ,

• state boundaries,

• county boundaries (to test for sensitivity of the method against number of communities),

• boundaries resulting from the SPT algorithm bS ,

• boundaries determined on the gravity model,

• boundaries determined on long-range distances only,

• federal reserve district boundaries (FRB), and

• economic area boundaries (http://www.bea.gov).

The significance is calculated by replacing bM and bS , respectively, by elements from the correspond-
ing null model.

For illustration we show two histograms and actual values for state and county boundaries in
Fig. S23. Clearly the random cross-correlations are quite different, which means that we have to
interpret the actual values of 0.439 and 0.398 differently as well. Indeed it turns out that the state
value is far from the mean random cross-correlation 0.272 ± 0.018, whereas the county one is not
(0.419 ± 0.023). Indeed, the empirical p-values, determined as the fraction of random correlations
above the observed true one, is 0 in the former and 0.84 in the latter case.

In order to compare cases with large deviation from the distribution, we determine the z-score i.e.
the distance of the absolute cross-correlation from the mean of the null model normalized by the
standard deviation:

z(b) :=
a(b, bM )− E(a(b, bR))

std(a(b, bR))
,

where E denotes mean and std standard deviation. In the state case, this z-score is very high, 9.46,
which means that the observed correlation is more than 9 standard deviations away from the random
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mean. In contrast the county z-score is 0.90, which means that the observation is within one standard
deviation and hence not significant.

We summarize the calculated cross-correlations in Tables S6 and S7 for bM and bS .

Table S6: Comparing boundary overlaps for various boundary networks with the modularity boundaries bM
and the corresponding null model bR using absolute cross-correlation a.

boundary network a(·, bM ) a(·, bR) p-value z-score

modularity boundaries 1.000 0.495± 0.028 < 10−3 18.15

SPT communities 0.552 0.385± 0.024 < 10−3 7.03

state boundaries 0.439 0.272± 0.018 < 10−3 9.46

county boundaries 0.398 0.419± 0.023 0.84 0.90

gravity boundaries 0.260 0.253± 0.019 0.35 0.40

large-range network boundaries 0.198 0.181± 0.017 0.14 1.02

federal reserve district boundaries 0.377 0.227± 0.019 < 10−3 7.91

economic area boundaries 0.452 0.307± 0.018 < 10−3 8.024

Table S7: Comparing boundary overlaps for various boundary networks with the SPT-based boundary bS and
the corresponding null model bR using absolute cross-correlation a.

boundary network a(·, bS) a(·, bR) p-value z-score

modularity boundaries 0.552 0.251± 0.013 < 10−3 22.55

SPT communities 1.000 0.367± 0.0164 < 10−3 40.63

state boundaries 0.358 0.220± 0.0138 < 10−3 10.99

county boundaries 0.569 0.562± 0.016 0.36 0.44

gravity boundaries 0.305 0.260± 0.016 0.002 2.73

large-range network boundaries 0.257 0.199± 0.015 < 10−3 3.94

federal reserve district boundaries 0.307 0.159± 0.013 < 10−3 11.79

economic area boundaries 0.492 0.318± 0.013 < 10−3 13.29

6.4. Discussion

For the state and the SPT boundaries we observe a strong deviation from the null model when
comparing against the modularity boundaries. So we can conclude that both state boundaries and
SPT boundaries are more similar to bM than expected by chance with a p-value < 10−3.

This is not the case for the gravity model, the county boundaries and the long-range model. In
these cases, the cross-correlation with bM is not larger than with a random model (p-value ≈ 0.44,
≈ 0.84 and ≈ 0.14). This means that they do not significantly coincide with bM .
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The absolute cross-correlation of the FRB boundaries with bM is a(bF , bM ) = 0.38, which is
significantly high when compared with the null model, which exhibits cross-correlations of only
a(bF , bR) = 0.23 ± 0.019. We observe a strong deviation from the null model and can therefore
conclude that the FRB boundaries are more similar to bM than expected by chance with a p-value
< 10−3.

The corresponding z-score equals 7.91, which is lower than the one for states (9.46). This im-
plies that the modularity boundaries’ overlap with the states is larger than the one with the FRB
boundaries.

We interpret the results on the FRB boundaries when compared with bM as follows:

• The structure of bM may be (partially) due to political structure i.e. result from bS or due
to additional money transport within FRB districts i.e. correlate with bF . Since both bS and
bF share strong similarties, in each of the two situations, we would see overlap with both
boundaries, so we can only judge strength of overlap with respect to the other boundary.

• We quantified strength of overlap by deviation from the null model, and the corresponding z-
score was more than 1.5 standard deviations higher for the state model. This stronger overlap
of states with bF therefore favors the first hypothesis i.e. the situation that political boundaries
are a stronger factor for the pattern observed in bM . In the case of dominance of the second
hypothesis, we would instead expect to still see overlap with state boundaries, but less overlap
than with the FRB ones.
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A. Global network properties

The following table lists the connectivity (ratio of existing links and possible links in the network),
and number of links L and total flux F relative to the respective quantities in the full mobility
network (L0 and F0), the mean outreach d̄ = 〈di〉 of all nodes (with outreach being defined as the
weighted average distance of all links of a node, di =

∑
j wij dij /

∑
j wij), the mean maximum link

distance d̄m = 〈dmi 〉 (with dmi = maxj{dij}), as well as the mean Q̄ and standard deviation σQ of the
modularity values, and the minimum (kmin), median (k̄), and maximum (kmax) number of modules
found in the ensemble of NP partitions:

Mobility network Long-range subnetwork Gravity model network

Connectivity 0.0765 0.0511 0.0762
L/L0 1 0.668 0.996
F/F0 1 0.219 1.159

d̄ (in km) 451 1,135 808
d̄m (in km) 3,079 3,079 3,099

NP 1000 329 500
Q̄ 0.6744 0.2180 0.4791
σQ 0.0026 9.01 · 10−6 0.0044

kmin 11 3 5
k̄ 13 3 6
kmax 16 3 7
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[12] R. Guimerà and L. A. N. Amaral. Cartography of complex networks: modules and universal roles. Journal
of Statistical Mechanics, 2:P02001, 2005.

[13] S. Maslov and K. Sneppen. Specificity and stability in topology of protein networks. Science,
296(5569):910–3, May 2002.

[14] M. E. J. Newman and M. Girvan. Finding and evaluating community structure in networks. Physical
Review E, 69(2):026113, Feb. 2004.

[15] R. Sokal and F. Rohlf. The comparison of dendrograms by objective methods. Taxon, 11(2):33–40, Jan
1962.

[16] V. Zlatic, G. Bianconi, A. Dı́az-Guilera, D. Garlaschelli, F. Rao, and G. Caldarelli. On the rich-club effect
in dense and weighted networks. European Physical Journal B, 67:271–275, 2009.

32


