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Appendix S2

Transport of independent particles: We first treat the highly artificial but analytically simplest case of inde-
pendent, i.e. not interacting, particles. Although these results do not describe correctly the physical situation, the
quantities derived will enter the actual solution and these results serve as a reference for the effects of particle-particle
interaction.

In the steady state reactive fluxes at the channel ends and diffusive flows are equivalent. For independent particles
one obtains for flow from bath A to bath B

k
(A)
+ cA − k

(A)
− ρs(0)

−D[∂x − F (x)] ρs(x)

k
(B)
− ρs(L)− k

(B)
+ cB

 ≡ J0 (S2-1)

Instead of solving the last equations directly, we derive steady state flow in terms of occupation numbers and first
passage times. For unidirectional transport from bath A to B , (cA 6= 0, cB = 0) the Fundamental Equation holds
[1, 2],

J0 =
N0→B

τ0→B
, with N0→B =

∫ L

0

ρs(x) dx , (S2-2)

relating steady state flow to the number of particles in the channel, N0→B , and the regular first passage time, τ0→B .
This equation holds for any unidirectional transport through some domain from some adjacent source to an adjacent
absorber, i.e. for any topology, dimension of the latter and for any interaction of particles with each other or with
the domain. Regular first passage time means that a reflecting boundary is employed at the source (here x = 0) and
that the particle is absorbed once it reaches the absorber (here bath B). This is denoted by the subscript 0 → B,
which also labels the particle number. For independent particles the particle number in the channel is proportional
to the bath concentration cA [2], which suggests the introduction of a specific particle number n, independent of the
concentration,

n0→B = N0→B/cA . (S2-3)

A similar relation holds for unidirectional flow from B to A (cA = 0, cB 6= 0). For arbitrary concentrations in the
baths, total flow is simply the superposition of the unidirectional flows since particles are not interacting with each
other,

J0 =
n0→B

τ0→B
cA −

nL→A

τL→A
cB . (S2-4)

A vanishing flow for equal concentrations cA = cB implies equivalence of the corresponding diffusive conductivities,
n0→B/τ0→B and nL→A/τL→A, which also holds for any linear combinations, i.e.

n0→B

τ0→B
=

nL→A

τL→A
=

α n0→B + β nL→A

α τ0→B + β τL→A
(S2-5)

For the following it is particularly useful to introduce the symmetrized (α = β = 1/2) and antisymmetrized (α =
−β = 1/2) specific particle number and first passage time:

n =
1
2

(n0→B + nL→A), τ =
1
2

(τ0→B + τL→A) , (S2-6)

∆n =
1
2

(n0→B − nL→A), ∆τ =
1
2

(τ0→B − τL→A) . (S2-7)

Symmetrized, antisymmetrized, as well as unidirectional quantities have the property

n

τ
=

∆n

∆τ
=

n0→B

τ0→B
=

nL→A

τL→A
. (S2-8)
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Flow can now be written in the form of a macroscopic Fick’s diffusion law

J0 =
n

τ
(cA − cB) . (S2-9)

Results for a general channel: We will now determine the symmetrized specific particle number n and the
symmetrized first passage time τ explicitly for a general channel.

For determination of the first passage times, we exploit that they are additive for one-dimensional diffusion. For
transport from bath A to B

τ0→B = τ0→L + τL→B (S2-10)

holds, where

τ0→L = D−1

∫ L

0

dx eΦ(x)

∫ x

0

dξ e−Φ(ξ) (S2-11)

is the regular first passage time of a particle starting at the reflective boundary x = 0, which is absorbed at x = L.
The second term

τL→B = L 〈e−(Φ(x)−Φ(L)〉 1

k
(B)
−

(S2-12)

is the first passage time of a particle starting at x = L, which is reflected at x = 0, and absorbed in bath B [3], where
the brackets denote the spatial average 〈 〉 = L−1

∫ L

0
dx. Similar relations hold for transport from bath B to A, and

the symmetrized and antisymmetrized first passage times result in

τ =
L2

2D
〈e−Φ(x)〉〈eΦ(x)〉

+
L

2
〈e−(Φ(x)〉

(
eΦ(L)

k
(B)
−

+
eΦ(0)

k
(A)
−

)
(S2-13)

∆τ =
L2

2D
〈〈sgn(x− y) e−[Φ(x)−Φ(y)]〉〉

+
L

2
〈e−Φ(x)〉

(
eΦ(L)

k
(B)
−

− eΦ(0)

k
(A)
−

)
, (S2-14)

with 〈〈 〉〉 := L−2
∫ L

0

∫ L

0
dxdy and sgn(z) being the sign function, i.e. sgn(z) ≡ −1, z < 0 and sgn(z) ≡ 1, z ≥ 0.

Note that for fast exchange, k− →∞, the last term vanishes in both equations, leaving the well known results of the
purely diffusive symmetrized and antisymmetrized first passage times [2].

The specific particle number n is obtained from equilibrium conditions, i.e. when cA = cB = c. When the baths A
and B are on the same free energy level, i.e. Φ(0) = Φ(L), the density fulfills ρs(x) = ρeq(x) = c e−[g+Φ(x)−Φ(0)]. The
number of particle inside the channel is Neq = c

∫ L

0
dx e−[g+Φ(x)−Φ(0)], or written in terms of the the specific particle

numbers Neq = c n0→B + c nL→A = 2 c n. So the symmetrized specific particle number has the form

n =
L

2
〈e−[g+Φ(x)−Φ(0)]〉 . (S2-15)

We emphasize that with Eq. (S2-8) the quantities ∆n, n0→B , and nL→A, respectively, can be derived from n, τ ,
and ∆τ .

Channel occupation probabilities for interacting particles: For interacting particles one has to replace the
concentrations in Eqs. (S2-1) by their probability weighted values,

(cA, cB) → (P0 cA, P0 cB) , (S2-16)

where P0 is the probability to find the channel unoccupied. For the determination of P0, one applies conservation of
probability, i.e. the channel is either unoccupied with probability P0, or occupied with probability P1, i.e. P0 +P1=1.
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The definition of the specific particle numbers, Eq. (S2-3), and the formal replacement (S2-16) then imply

P0 cA n0→B + P0 cB nL→A︸ ︷︷ ︸
=P1

+P0 = 1 . (S2-17)

Consequently, the probability to find an empty channel is

P0 =
1

1 + cA n0→B + cB nL→A

=
1

1 + n(cA + cB) + ∆n(cA − cB)
. (S2-18)

For the case of m different species, with respective concentrations c(i) and respective specific particle numbers
n

(i)
0→B , n

(i)
L→A, the considerations concerning conservation of probability also hold,

m∑
i=1

P0c
(i)
A n

(i)
0→B + P0c

(i)
B n

(i)
L→A︸ ︷︷ ︸

=P1

+P0 = 1 , (S2-19)

resulting in a generalization of Eq. (S2-18),

P0 =
1

1 +
∑m

i=1

[
c
(i)
A n

(i)
0→B + c

(i)
B n

(i)
L→A

]
=

1

1 +
∑m

i=1

[
n(i) (c(i)

A + c
(i)
B ) + ∆n(i) (c(i)

A − c
(i)
B )
] .

(S2-20)

Translocation probability: The translocation probability is the conditional probability that a particle located at
one channel end is absorbed by the bath at the opposite end. For a particle at x = 0 this conditional probability can
be derived from steady state flows of unidirectional transport A → B, (cA = c 6= 0, cB = 0) of independent particles.
The number of particles entering per unit time the channel at x = 0 from bath A is

JA→0 = k
(A)
+ c . (S2-21)

This flow splits up into the flow of particles which either leave the channel by absorption into bath B, given by J0, or
back into bath A. Hence, the translocation probability is the ratio

p0→B =
J0

JA→0
=

n/τ

k
(A)
+

, (S2-22)

i.e. the ratio of the diffusive conductivity to reactive conductivity at the entrance. We note that — within our
approximative treatment of particle-particle interaction resulting in channel blocking — this quantity is identical for
independent and interacting particles. This relation directly implies that the translocation probability mainly increases
with overall binding strength, similar to J0, and is independent from the detailed arrangement of interactions within
the channel, i.e. permutations of Φ(x).

Lifetime of channel states and occupation probabilities: For simplicity we consider again unidirectional
transport (cA = c 6= 0, cB = 0). The mean time for channel access, i.e. the mean lifetime of an empty channel is

τ (A)
e = 1/(k(A)

+ c) . (S2-23)

Once the particle has reached the channel entrance, x = 0, it stays inside the channel for a certain residence time
before it leaves either by returning into bath A or by passing through to bath B. Determining the mean residence
time, τA←0→B , is well established [3–5]. Here, however, we want to derive it in terms of occupation number and first
passage time. For this purpose we apply Eq. (S2-2), which holds for every unidirectional flow when the corresponding
first passage time is inserted. We consider now the flow component from bath A to x = 0, JA→0 = k

(A)
+ cA for
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independent particles. The first of the Eqs. (S2-1) than may be reinterpreted that at x = 0 this flow splits up into
flow of particles reabsorbed by bath A, and diffusive flow toward bath B, i.e. k

(A)
+ cA = k

(A)
− ρ(0) + J0. The first

passage time of this process is just the mean residence time τA←0→B . The particle number is independent from the
flow under consideration, so NA←0→B = N0→B , which according to Eq. (S2-2) results in

k
(A)
+ cA =

N0→B

τA←0→B
(S2-24)

The Eqs. (S2-3,S2-5) then imply

τA←0→B =
n0→B

k
(A)
+

=
n

k
(A)
+

τ0→B

τ
, (S2-25)

which in the case of a symmetric channel (τ = τ0→B , k
(A)
+ = k

(B)
+ = k+) simplifies to τA←0→B = n/k+. Hence, the

ratio of lifetimes of empty to occupied channel is

τ
(A)
e

τA←0→B
=

n

τ
τ0→B c . (S2-26)

The same holds for unidirectional transport in the opposite direction., i.e. one obtains for the symmetrized and
antisymmetrized ratios of lifetimes of channel states

τ
(A)
e

τA←0→B
± τ

(B)
e

τA←L→B
=

n

τ
(τ0→B ± τL→A)︸ ︷︷ ︸

=2n or 2∆n

c

=
(

P1

P0

)
A→B

±
(

P1

P0

)
B→A

(S2-27)

where we exploited Eqs. (S2-5-S2-7). So the ratios of mean lifetimes of channel states determine ratios of channel
occupation probabilities.

Effect of an asymmetric binding site on flow: As a generic model for a binding site we assume a rectangular
shaped potential Φ(x), which has a depth Φ0 < 0 within the binding region of width wL (0 < w ≤ 1), and is otherwise
zero. Asymmetry is realized by shifting the center of the binding site a distance κL away from the middle of the
channel L/2. To keep the binding site within the channel, the asymmetry parameter must fulfill |κ| ≤ (1 − w)/2.
Insertion into Eqs. (S2-13, S2-14, S2-15) gives symmetrized and antisymmetrized first passage times and specific
particle numbers as

τ =
L2

2D

(
1 + 4w(1− w) sinh2(Φ0/2)

)
+

L

2
(1 + w(e−Φ0 − 1))

(
1

k
(B)
−

+
1

k
(A)
−

)
(S2-28)

∆τ =
L2

2D
4κw sinh(Φ0)︸ ︷︷ ︸

=(τ0→L−τL→0)/2, asymmetry of Φ(x)

+
L

2
(1 + w(e−Φ0 − 1))

(
1

k
(B)
−

− 1

k
(A)
−

)
︸ ︷︷ ︸

=(τL→B−τ0→A)/2 , asymmetry of channel exit

(S2-29)

n =
L

2
e−g

(
1 + w(e−Φ0 − 1)

)
. (S2-30)

The parameter ∆n, which is necessary for determining the probability to find the channel either empty P0 (see



5

Eq. (S2-18), or occupied P1 = 1− P0, is obtained from Eq. (S2-8) as

∆n =
n

τ
∆τ . (S2-31)

The symmetrized parameters τ and n, and, hence, n/τ , are independent of permutations of the potential Φ(x), i.e.
in particular of location of the binding site, quantified by the parameter κ. The antisymmetrized first passage time
∆τ consists of two components, namely the part related to diffusion within the asymmetric potential Φ(x) and the
part related to the difference of first passage times of channel exit. The latter depends on exit rates and the averaged
Boltzmann factor 〈e−Φ(x)〉 = 1+w(e−Φ0−1) (Eq. (S2-12)),i.e. it is independent of permutations of Φ(x), in particular
of the location of the binding site. So the effect of the asymmetry of Φ(x), and of the asymmetry of channel exit can
be discussed separately.

First, symmetric exchange properties at the channel ends are assumed, which let the term related to channel exit in
Eq. (S2-29) vanish. A binding site near bath B (κ > 0) traps particles in this location. For unidirectional transport
A → B this trapping in trans position, i.e. close to the absorbing bath, enhances the rate of the particles reaching
the channel end x = L, when compared to the rate of particles reaching the channel end x = 0 for unidirectional flow
in reverse direction B → A. This is reflected in the corresponding first passage times, i.e. ∆τ = (τ0→B − τL→A)/2 =
(τ0→L − τL→0)/2 < 0. Intuitively it is evident, that this asymmetry of first passage times is accompanied by an
asymmetry in occupation probabilities. For unidirectional transport A → B, the corresponding shorter first passage
time should imply a higher probability to find the channel empty, than for unidirectional transport in reverse direction
B → A. Mathematically this can be seen from Eq. (S2-31), as ∆τ < 0 implies ∆n < 0 (note that n/τ in is independent
of κ). When inserted into Eq. (S2-18), one obtains the result anticipated intuitively,

∆P0 = P0(cA = c, cB = 0)︸ ︷︷ ︸
unidirect. transport A→B

− P0(cA = 0, cB = c)︸ ︷︷ ︸
unidirect. transport B→A

= −2∆n P0(c, 0) P0(0, c) > 0 . (S2-32)

The difference of unidirectional flows is then

∆J = ∆P0 J0 > 0 , (S2-33)

as J0 is independent from asymmetry. Hence, a binding site in trans position of the concentration gradient implies a
higher flow than in cis position.

We now consider a symmetric particle-channel interaction Φ(x), but assume asymmetric exchange at the channel
ends, i.e. the exit rates differ. Hence the antisymmetrized first passage time, Eq. (S2-29), solely consists of the term
related to channel exit. If channel exit to bath B is faster than to bath A, i.e. k

(B)
− > k

(A)
− , the first passage time

for transport A → B is shorter than that in reverse direction, B → A, i.e. ∆τ < 0. Following the same arguments
as above, one obtains a higher probability to find the channel empty, and by this a higher flow for unidirectional
transport from A → B, than for B → A. In the general case when an asymmetric binding site and channel exit
are present, the Eqs. (S2-29,S2-31) imply that both components may work synergistically, i.e. may enhance flow
asymmetry, when the binding site is close to the end with the faster exit rate k− and vice versa they may counteract
when binding is located near the end with the slower exit rate.
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