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A Model Scaling

A.1 Scaled one-clone model

By making the following substitutions: tc = Tc/R̃ (here R̃ := (α1/2 − δ
1/2

Tc
)2/ǫ), b = η0B/γ, pc = δPc

Pc/γ,

ig = δIg
δPc

Ig/(a2γ), p = δP P/(RR̃β0) (here β0 is the initial number of beta cells), βs = β/β0, we get

dtc
dt

= αtc
p

p + k
− δTc

tc − (α1/2 − δ
1/2

Tc
)2t2c (S1a)

db

dt
= η0 + (−η2ptc + η1p − η0)b (S1b)

dpc

dt
= δPc

[
η2ptcb

η0

− pc

]
(S1c)

dig
dt

= δIg
[ℓb + pc − ig] (S1d)

dβs

dt
= −κR̃tcβs (S1e)

dp

dt
= δP [tcβs − p] , (S1f)

where k = δP k̃/(RR̃β0), η2 = η̃2RR̃2β0/δP , η1 = η̃1RR̃β0/δP , and ℓ = a1δPc
/(a2η0).
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A.2 Reduced/scaled one-clone model

Substituting the variables b, ig and p by their steady states (fast variables) and assuming that βs is roughly

a constant (slow variable), i.e. βs = 1, generates the following two-variable model

dtc
dt

= αtc
tc

tc + k
− δTc

tc − (α1/2 − δ
1/2

Tc
)2t2c (S2a)

dpc

dt
= δPc

[
η2t

2
c

η2t2c − η1tc + η0

− pc

]
, (S2b)

where k = k/βs(= k) (can be shown analytically to satisfy 0 ≤ k ≤ 1, see Section B) and η0 = η0/βs(= η0).

A.3 Scaled two-clone model

By applying the following substitutions tcj = Tcj/R̃ (here R̃ := (α
1/2

21
− δ

1/2

Tc21
)2/ǫ), bj = η0jBj/γj , pcj

=

δPcj
Pcj/γj , igj = δIgj

δPcj
Igj/(a2jγj) and pj = δPj

Pj/(RjR̃β0) (j = 1, 2), we obtain

dtc1j

dt
= α1jtc1j

p1

p1 + k1j
− δTc1j

tc1j − (α
1/2

21
− δ

1/2

Tc21
)2tc1j(tc11 + tc12) (S3a)

dtc2j

dt
= α2jtc2j

p2

p2 + k2j
− δTc2j

tc2j − (α
1/2

21
− δ

1/2

Tc21
)2tc2j(tc21 + tc22) (S3b)

dbj

dt
= η0j +

[
− η2jpjG(tc11, tc12, tc21, tc22) + η1jpj − η0j

]
bj (S3c)

dpcj

dt
= δPcj

[
η2jpjG(tc11, tc12, tc21, tc22)bj

η0j
− pcj

]
(S3d)

digj

dt
= δIgj

[ℓjbj + pcj − igj ] (S3e)

dβs

dt
= −κR̃G(tc11, tc12, tc21, tc22)βs (S3f)

dpj

dt
= δPj

[
G(tc11, tc12, tc21, tc22)βs − pj

]
, (S3g)

where kj = δPj
k̃j/(RjR̃β0), η2j = η̃2jRjR̃

2β0/δPj
, η1j = η̃1jRjR̃β0j/δPj

, and ℓj = a1jδPcj
/(a2jη0j) (recall

that G is linear).
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B Theoretical Results

B.1 Nullclines and steady states

We focus in this section on the reduced model described by Eqs. (S2a)-(S2b) to find its steady states and

determine under what conditions these steady states are stable. In order to do so, we examine the tc and

pc-nullclines and their points of intersections (steady states).
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Fig. S1: A sketch of the functions f1(tc) and f2(tc, k) for several values of k. These two functions are
guaranteed to intersect at two points for 0 ≤ k < 1, but become tangential at k = 1 and never intersect
for k > 1. The points of intersection are highlighted by black dots for one particular case, where the
tc-component of each point corresponds to the value of the vertical tc-nullcline, i.e. tc = tcr defined by
Eqn. (S5).

Equation (S2a) is independent of pc, therefore its nullclines are vertical lines. Clearly, tc = 0 is one

tc-nullcline. For additional tc-nullclines, we must have

α
tc

tc + k
= δTc

+ (α1/2 − δ
1/2

Tc
)2tc = 0 ⇐⇒

(α1/2 − δ
1/2

Tc
)2t2c − (α − δTc

)tc = −k
[
δTc

+ (α1/2 − δ
1/2

Tc
)2tc

]
.

(S4)

Let f1(tc) := (α1/2 − δ
1/2

Tc
)2t2c − (α− δTc

)tc and f2(tc, k) := −k [δTc
+ (α − δTc

)tc]. Fig. S1 shows typically

the graphs of these two functions (f1, f2) intersecting at two points when the avidity of T cells is high
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enough (i.e, when k is small enough) and do not intersect otherwise. To determine the parameter range

for k in which the two curves f1, f2 intersect, we solve for the roots of tc from the quadratic Eqn. (S4).

By letting a := α1/2 − δ
1/2

Tc
> 0 and b := α1/2 + δ

1/2

Tc
, we deduce that the roots of Eqn. (S4) are

tcr =
a(b − ak) ±

√
a2(b − ak)2 − 4a2kδTc

2a2
. (S5)

To obtain real roots, we require the quantity inside the square root to be non-negative, i.e. (b − ak)2 −

4kδTc
≥ 0. It follows that

b2 − 2abk + a2k
2
− 4kδTc

≥ 0 ⇐⇒

b2 − 2(α − δTc
)k + a2k

2
− 4δTc

k ≥ 0 ⇐⇒

b2 − 2αk + a2k
2
− 2δTc

k ≥ 0.

But −2αk − 2δTc
k = −2k(α + δTc

) = −k(a2 + b2). Hence

a2k
2
− (a2 + b2)k + b2 ≥ 0 ⇐⇒

a2k(k − 1) − b2(k − 1) ≥ 0,

which implies that

(a2k − b2)(k − 1) ≥ 0. (S6)

Inequality (S6) is satisfied either when k ≥ (b/a)2 > 1 or 0 ≤ k ≤ 1 < (b/a)2. If k ≥ (b/a)2, then one of

the tcr < 0, a physiologically irrelevant case. However, if 0 ≤ k ≤ 1, then both tcr > 0 and the graphs of

the two functions f1, f2 intersect at either one point (i.e. they are tangential to each other) when k = 1,

or intersect at two points when 0 ≤ k < 1, as demonstrated in Fig. S1. Thus, two physiologically relevant

tc-nullclines (vertical lines) are obtained in the interval k ∈ [0, 1).

By solving for pc in Eqn. (S2b), we obtain the pc-nullcline, given by

pc =
η2t

2
c

η2t2c − η1tc + η0

The points of intersection of the tc- and pc-nullclines are the steady states of Eqs. (S2a)-(S2b). There are

three such intersections; namely, the point S1 := (0, 0), corresponding to a healthy state (with no effector

CD8+ T-cell, CD4+ T-cell or plasma-cell accumulation); the point U, whose tc-component is the left
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black dot shown in Fig. S1; and the point S2, corresponding to an autoimmune state (with elevated level

of CD8+ T cells, CD4+ T cells and plasma cells), whose tc-component is the right black dot in Fig. S1.

These steady states can all coexist provided that k ∈ [0, 1). We demonstrate below that S1 and S2 are

stable, while U is unstable.

Fig. S1 reveals that increasing T-cell avidity (i.e. decreasing k within [0, 1)) shifts the right black

dot of intersection (and thus the corresponding tc-nullcline) to the right. This shift is accompanied

by an elevation in the level of autoreactive T cells in the autoimmune state S2. The left black dot of

intersection, on the other hand, is shifted to the left against the origin, compressing the basin of attraction

of the healthy state S1. Details of these various configurations are explained in detail in the main text.

Notice that the denominator in the equation of pc-nullcline could be zero (in which case, the pc-

nullcline will have a vertical asymptote). This may lead to an unbounded increase in the level of T cells

in the autoimmune state S2 while varying k, a feature considered unrealistic biologically (see Fig. S1(a)).

To avoid this situation, we impose the condition η2
1 < 4η2η0

B.2 Stability analysis

The Jacobian matrix of Eqs. (S2a)-(S2b) is given by

J =




2αtc

tc + k
−

αt2c
(tc + k)2

− δTc
− 2(α1/2 − δ

1/2

Tc
)2tc 0

δPc

[
2η2tc

η2t2c − η1tc + η0

−
η2t

2
c(2η2tc − η1)

(η2t2c − η1tc + η0)
2

]
−δPc




.

The eigenvalues of J |S1
are λ1 = −δTc

and λ2 = −δPc
both of which are negative, so the healthy state

is always stable. In the presence of the two other steady states, the autoimmune state S2 is also stable

while the steady state U is unstable. The tc-nullcline passing through U is the separatrix between the

basins of attraction of the two states S1 and S2.

B.3 B-cell-dependent T-cell activation

In one of the model assumptions stated in the main text, we ignored the direct role of B cells in activating

T cells and assumed that the three types of APCs under consideration (DCs, macrophages and B cells)
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act uniformly on the T-cell population. We also assumed that the population size of APCs is roughly

constant. Here we show that having a separate pool of B cells that acts directly on T cells as APCs for

activation and cell replication, does not significantly alter the general behaviour of the reduced one-clone

model.

To varify this, we modify Eqn. (S2a) to account for B-cell activation of T cells, as follows

dtc
dt

= (αBb + α)tc
tc

tc + k
− δTc

tc − (α1/2 − δ
1/2

Tc
)2t2c , (S7)

where αBbt2c/(tc + k) is the B-cell-dependent T-cell activation occuring at a rate αB and satisfying αBb+

α ≈ α. (This equation derives from the non-scaled form as done before.) Including such terms in the

dynamic equation of tc generates a cubic-shped tc-nullcline by joining the two right vertical nullcline

asscociated with Eqs. (S2a)-(S2b) (see Fig. S2. Increasing the value of aB decreases the steepness of this

cubic nullcline and alightly alters the location of the steady states S2 and U, but does not their stability.

This suggests that the approximation used in Eqn. (S2a) is justifiable.
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Fig. S2: The phase plane of Eqs. (S7) and (S2b), displaying the tc- and pc-nullclines for aB = 0.5 (tc = 0
nullcline is not shown because the c-axis is in logarithmic scale). The two gray lines are the tc-nullclines,
while the Hill-like black line is the pc-nullcline. The stable steady state S2, shown as black dot, is the
autoimmune state as before, while the unstable steady state U is shown as a white dot. (The healthy
state S1 is not shown.) Including the term αBbt2c/(tc + k) in the dynamic equation of tc modified the
shape of the tc-nullclines only slightly.
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