
1

The Memetic algorithm for the Quadratic Assignment Problem1

The Memetic Algorithm (MA) implemented is presented in Figure 1. In each generation, the algo-2

rithm applies the operators: selectParents, recombination, and two local search strategies (swapTS3

and 8-neighborLS). Additionally, the algorithm uses an update procedure (updatePop), to keep the4

characteristics of the population structure which is explained later. The MA runs for a certain number5

of generations (max number of generations), which can be either fixed or it can depend on the size of6

instance and/or the convergence of the algorithm. Extra strategies are applied to deal with premature7

convergence. Next, we describe each of the components of the MA implemented in more details.8

Solution representation9

The solution is represented as an array of integers of size n. Each position of the array stores the location10

of an object, so, S(i) = k means that object i is assigned to location k (1 ≤ i ≤ n, 1 ≤ k ≤ m).11

Population structure12

The population is structured as a ternary hierarchical tree composed of 13 agents as shown in Figure13

2. This structure was first employed by Carrizo, Tinetti and Moscato [1] and it has been successfully14

used in different applications [2–4]. The structure also defines four overlapped subpopulations, each one15

consisting of a leader agent and three supporter ones, as shown in Figure 2 using dashed lines. The16

updatePop procedure guarantees that the leader agent of a subpopulation always has the best solution17

in that subpopulation . As a consequence, the best solution found in the end of each generation will be18

in agent0 (leader agent of supop0).19

Each agent consists of a list of P solutions that are good quality and sufficiently diverse. In order to20

ensure these characteristics, the list of solutions in each agenti is updated as follows. Let agentij represent21

the solution Sj in the agent i and d(S1, S2) the distance between solutions S1 and S2 defined by22

d(S1, S2) = |{i ∈ {1, .., n} | S1(i) 6= S2(i)}| (1)

First, we say that an agent is complete if its list of solutions is full. On the contrary, an agent is not23

complete. Let agentibest and agentiworst represent the solution with the best and worst cost respectively,24

in the list of solutions of agenti. The updateAgent(S, i) in the algorithm in Figure 1, will add the25

solution S in agenti if any of the following conditions apply:26

1. agenti is not complete ∧ d(S, agentik) ≥ 0.1n, ∀k.27

2. agenti is not complete ∧ ∃k/d(S, agentik)<0.1n ∧ Cost(S)<Cost(agentibest). Then S will replace28

agentik / d(S, agentik)) is minimum, ∀k.29

3. agenti is complete ∧ Cost(S) < Cost(agentibest) . Then S will replace agentik / d(S, agentik)) is30

minimum, ∀k.31

4. agenti is complete ∧ Cost(S) ≥ Cost(agentibest) ∧ d(S, agentik) ≥ 0.1n,∀k ∧ Cost(S) < Cost(agentiworst).32

Then S will replace agentiworst.33

When the list is not complete, conditions 1 and 2 decide to add a new solution if it is sufficiently34

diverse or it is better than the best solution in the list. When the list is complete, conditions 3 and 435

also check if the new solution is better than the best one or it is sufficiently diverse, but there exists an36

additional condition to decide which solution will be replaced.37

2

Initial population38

Each agent in the initial population is initialized with only one solution. Each solution is constructed39

by assigning each object to a randomly chosen location. Afterwards, the local search swapTS, which is40

described later, is applied. Finally, when we have 13 feasible solutions (one in each agent), the procedure41

updatePop is applied. This process allows us to start our MA with a population composed of local42

minima solutions.43

Parents selection44

Our MA restricts the selection of the parents to be recombined based on the tree structure. Figure 345

shows the pseudo-code of the procedure selectParents. The parameter i refers to agents 1 to 12 and46

the variable k represents the leader agent of the agent i in the tree structure. For example, if i = 1, 247

or 3, then k = 0; if i = 4, 5 or 6, then k = 1, and so on. For each i, the parent1 is a solution selected48

uniformly at random from the pool of solutions of agenti. The selection of parent2 will depend on the49

diversity of the subpopk. We say that a subpopulation is diverse (heterogenous), if the supporters of50

the subpopulation have less than 20% of the objects on the same location, else it will be declared to be51

“no diverse” (homogeneous). In the first case, parent2 is chosen uniformly at random from the pool of52

solutions of agentk. On the contrary, if the subpopulation is homogeneous, parent2 is randomly chosen53

from an agentj , such that the subpopulation of agentj is not k. For example, if i = 4 and subpop1 (k = 1)54

is homogeneous, then parent2 will be randomly chosen from agentj , such that j ∈ {7, 8, 9, 10, 11, 12},55

since {4, 5, 6} belong to subpop1. On the contrary, if subpop1 (k = 1) has not lost diversity, then parent256

will be chosen randomly from the agent1.57

Recombination operator58

We use a modified version of the cycle crossover also used by Merz and Freisleben [5]. The operator aims59

to produce an offspring with no extra mutation from the parents (an information-preserving crossover),60

which means that each position in the offspring comes from one of the parents. The original cycle crossover61

was designed to be used in QAP instances with n = m. When we use it on an instance with n < m, an62

object can be left without a location. To explain the recombination operator, we use the example shown63

in Figure 4.64

Initially, all the objects with the same location in both parents are copied to the offspring (objects A65

and E). Then, the algorithm randomly selects an unassigned object from the offspring, say object D, and66

looks at its location in one of the parents, say Parent 2. Thus, the recombination assigns location #3 to67

element D. Next, we look at the location of D in Parent 1 (i.e. location #1) and check which object is68

in location #1 in Parent 2 (i.e. object G), assigning its location to the offspring (i.e. object G goes to69

location #1). The process is repeated, now checking the location of object G in Parent 1 (location #4).70

However, as location #4 is not present in Parent 2, the process stops. We repeat the process starting71

with object H in parent 1. After processing all the objects in the offspring, object B still does not have72

a location because both locations #3 and #12 have already been taken. This situation does not happen73

when n = m. To deal with this problem, for each of the unassigned objects we trace a straight line74

between the location of object B in both parents (locations #3 and #12) and choose a random location75

over it, in this case location #6. It can also be the case that all the locations in that line are already76

taken. In that situation the algorithm randomly selects an unassigned location from any of the parents.77

Tabu Search78

Tabu Search (TS) [6] is a metaheuristic that uses memory structures to avoid a local search strategy79

to be trapped in a local minima. The inclusion of Tabu Search in the local search strategy in the80

3

Memetic Algorithm (first proposed by Moscato [7]) has consistently shown very good results in different81

applications [2, 7, 8] and its has been chosen due to the proved synergy within this population-based82

appraoch.83

We use a basic TS algorithm to enhance the pairwise interchange heuristic (swapTS in the MA84

algorithm of Figure 1). In the pairwise interchange heuristic, the neighborhood of a solution, N(S),85

corresponds to the set of all new solutions produced by the swap of the locations of two different objects,86

i.e, S(i) = k is swapped with S(i′) = k′, producing S(i) = k′ and S(i′) = k. In each iteration, the best87

solution from the neighborhood N(S) is selected. For the TS version, after swap S(i) = k with S(i′) = k′,88

the objects i and i′ are forbidden to return to the locations k and k′, respectively, for a certain number89

of iterations (tabu tenure). However, if the swap improves the value of the objective function of the best90

solution found so far, then it is allowed (aspiration criteria). The process is repeated until there is no91

improvement for a fixed number of iterations.92

The tabu tenure is an integer value that is randomly generated from an interval [T1, T2] after each93

swap is performed.94

8-neighbor local search95

The second local search that the MA uses is the greedy algorithm called 8-neighborLS. This local search96

aims at exploring the repository of objects to contiguous locations in the grid. Due to the representation97

used, a solution only considers the locations that are already assigned, so the operators do not allow the98

algorithm to fully explore all locations of the grid.99

This local search is applied once per generation on the best solution of the population and only if100

n < m (the number of objects is smaller than the number of locations). On the contrary, if n = m, there101

is no need to use it, since we are already using the whole set of grid locations available.102

The algorithm works as follows: for each object i, the algorithm tests if moving the selected object103

to one of its 8 contiguous locations in the grid improves the quality of the solution. In case it does, the104

object is moved and the process is repeated again, until no further improvement can be obtained moving105

that object. The same process is repeated with each object.106

Diversification107

One of the problems that a designer of a population-based metaheuristic needs to address is the premature108

convergence of the population [7]. This situation generally happens when the size of the population is109

small, like in this case. In order to avoid this, two diversification strategies have been implemented.110

The first one was already described previously, which aims to avoid convergence in a subpopulation by111

selecting parents from different subpopulations to perform the recombination operator.112

The second strategy is a mechanism that is triggered when the MA has been unable to find a better113

solution during the last n/4 generations. If that is the case, the whole population is restarted and only114

the best solution from agent0 is kept. This strategy aims to provide a new starting point for the MA,115

without losing the best individual found so far.116

Some preliminary results117

The MA was coded in Java 1.6 and the computational tests were run on a PC with Intel Core 2 Duo CPU118

(1.86 Ghz, 2GB RAM) running Solaris 10. We analyzed the performance of the MA using the instances119

from the Quadratic Assignment Problem Library (QAPLIB) [9]. QAPLIB is a repository of instances of120

the Quadratic Assignment Problem that can be used as a benchmark for new algorithms. The instances121

considered have the same number of objects (n) and number of locations (m), and range from 25 to 256122

objects.123

4

We compared our MA with two other population-based metaheuristics. The first one was presented124

by Demirel and Toksari [10]. It uses an Ant Colony System that implements a Simulated Annealing local125

search (ACSA). The second one corresponds to a MA proposed by Merz and Freisleben [11] (MAM). The126

algorithm uses the information-preserving crossover and a variant of the pairwise interchange heuristic on127

an unstructured population of 40 individuals. Complementary, Merz and Freisleben in [5], compare the128

MA against five competitors. We used the results from the later, since the results are better than [11].129

In both algorithms (ACSA and MAM), the authors also use the instances taken from the QAPLIB [9].130

In general, the MA proposed performed well compared with both competitors. In the case of ACSA,131

our algorithm outperformed in all but two instances (tai50a and tai80a). The average gap is 0.115%,132

compared to 0.382% of ACSA. In comparison with MAM we also obtained a slight better average gap133

(0.322% against 0.388%), but the difference is not so significant.134

References135

1. Carrizo J, Tinetti F, Moscato P (1992) A computational ecology for the quadratic assignment136

problem. In: Proceedings of the 21st Meeting on Informatics and OR. Buenos Aires, Argentina,137

August.138

2. Berretta R, Moscato P (1999) The number partitioning problem: An open challenge for evolution-139

ary computation? In: Corne D, Dorigo M, editors, New Ideas in Optimization, McGraw-Hill. pp.140

261–278.141

3. Berretta R, Rodrigues L (2004) A memetic algorithm for a multistage capacitated lot-sizing prob-142

lem. Int J of Production Economics 87: 67–81.143

4. Buriol L, Franca P, Moscato P (2004) A new memetic algorithm for the asymmetric traveling144

salesman problem. J of Heuristics 10: 483–506.145

5. Merz P, Freisleben B (2000) Fitness landscape analysis and memetic algorithms for the quadratic146

assignment problem. IEEE Transactions on Evol Computation 4: 337–352.147

6. Glover F, Laguna M (1997) Tabu Search. Norwell, Massachusetts: Kluwer Academic Publishers.148

7. Moscato P (1993) An introduction to population approaches for optimization and hierarchical149

objective functions: A discussion on the role of tabu search. Annals of OR 41: 85–121.150

8. Moscato P, Mendes A, Berretta R (2007) Benchmarking a memetic algorithm for ordering microar-151

ray data. Biosystems 88: 56–75.152

9. Burkard R, Karisch S, Rendl F (1997) QAPLIB - a quadratic assignment problem library. J of153

Global Optimization 10: 391–403.154

10. Demirel N, Toksari M (2006) Optimization of the quadratic assignment problem using an ant155

colony algorithm. Applied Mathematics and Computation 183: 427—435.156

11. Merz P, Freisleben B (1999) A comparison of memetic algorithm, tabu search, and ant colonies157

for the quadratic assignment problem. In: Angeline P, editor, Congress on Evol. Computation158

(CEC’99). IEEE Press, pp. 2063–2070.159

5

Figure 1. Pseudo-code of the Memetic Algorithm implemented for the Quadratic
Assignment Problem.

6

4agent agent5 agent6 agent7 agent8 agent9 agent12

agent1 agent2 agent3

agent0

agent10 agent11

subpop 0

subpop 1 subpop 2 subpop 3

Figure 2. Population structure used in our memetic algorithm. It has been shown before that
the use of population structures is a useful mechanism to bias the search process, and that accelerates
the discovery of near-optimal solutions. We have used a hierarchical population composed of 13 agents
which are organized in a complete ternary tree. The figure also indicates the subpopulations present in
the structure.

7

Figure 3. Pseudo-code of the selectionParents procedure from the Memetic Algorithm showed in
Figure 1.

8

Parent 2

A B C D E F G HElement

5 7

5 73 1

10 1295 3 7 1

B p1

B p2

B off

5 3 7 1 12Offspring 96 10

Parent 1 5 3 9 1 47

5 7

12

10 3 8 9112

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

0

Grid

10

Offspring

A B C D E F G H

B p1

B p2

Figure 4. Example of the modified cycle crossover operator for the memetic algorithm. It
solves the problem of unassigned objects of the original cycle crossover in the case when n < m.

