
Supplementary Note S1: Model simplification

In this note, we show that the model equations we have considered in the main text can be
derived as an approximation of a complete mechanistic model when
i) the concentration of enzymes are much lower than the initial concentration of the substrate
protein; OR
ii) the enzyme-substrate association and dissociation rate constants are much larger than
the catalysis rate constants.

First, we assume the reactions for a single-site protein which degrades after phosphory-
lation follow the mechanistic Michaelis-Menten model:

S0 + kin
kon
−→
←−
koff

S0.kin
kcat−→ S1 + kin

S1 + pho
kron
−→
←−

kroff

S1.pho
krcat−→ S0 + pho

S1
kd

−→ φ

S0 denotes the unphosphorylated protein which reacts with kinase, denoted by kin. It is
assumed that the substrate and kinase react to form an enzyme-substrate complex S0.kin
which can in turn dissociate to form either the enzyme and substrate, or the enzyme and
product which is the phosphorylated protein denoted by S1. Similarly, the phosphorylated
protein S1 and phosphatase, denoted by pho, react to form the substrate-enzyme complex
S1.pho which dissociates to form either the phosphatase and phosphorylated protein or the
phosphatase and unphosphorylated protein S0. For the purposes of this note, we will forget
degradation terms in the following calculations. Therefore, the governing equations for this
system are as follows:

d[S0]

dt
= −kon[kin][S0] + koff [S0.kin] + krcat[S1.pho] (1a)

d[S1]

dt
= −kron[pho][S1] + kroff [S1.pho] + kcat[S0.kin] (1b)

d[S0.kin]

dt
= +kon[kin][S0]− koff [S0.kin]− kcat[S0.kin] (1c)

d[S1.pho]

dt
= +kron[pho][S1]− kroff [S1.pho]− krcat[S1.pho] (1d)

[kin] = kinT − [S0.kin] (2a)

[pho] = phoT − [S1.pho] (2b)
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where kinT and phoT denote the total concentration of the kinase and phosphatase, respec-
tively; and the last two equations reflect the conservation of mass. We assume that the total
concentration of phosphatase is constant, but the total concentration of kinase changes over
time. The total concentration of kinase increases non-linearly from an almost zero value to
reach a maximum value as follows:

kinT = kinmax
T

(t/C)2

1 + (t/C)2
(3)

where kinmax
T is the maximum that kinT can reach and C is a constant. The previous model

can be extended to a protein that contains n phosphorylation sites and is degraded upon
phosphorylation on m sites. In what follows we describe two different hypotheses that reduce
the equations described above into the simplified model considered in the main text.

i) Hypothesis regarding the relative amounts of kinase, phosphatase,
and substrate

In this section, we show that the complete mechanistic model (described above) can be
reduced to the simple model described in the main text when the concentrations of enzymes
are much lower than the initial concentration of the substrate protein.

First, we will define dimensionless variables to simplify the analysis: s1 = [S1]/ST , where
ST is the total amount of substrate (in the case where degradation is considered, ST is the
initial amount of the substrate); c = [S0.kin]/kinmax

T ; and c′ = [S1.pho]/phoT . We then
define a dimensionless time t̃ = t konkin

max
T and the time-derivative with respect to t̃ is

denoted by a dot, i.e. ẋ = dx/dt̃. We also define dimensionless kinase and phosphatase
concentrations: e = [kin]/kinmax

T and e′ = [pho]/phoT . The resulting equations are:

ṡ1 = −kron

kon

phoT

kinmax
T

s1e
′ +

kroff

konST

phoT

kinmax
T

c′ +
kcat

konST

c (4a)

ċ =
ST

kinmax
T

(s0e−Kc) (4b)

ċ′ =
ST

kinmax
T

kron

kon

(s1e
′ −K ′c′) (4c)

where K = (koff +kcat)/(konST ) and K ′ = (kroff +krcat)/(kronST ) are normalized Michaelis-
Menten constants. We define the parameter ε = kinmax

T /ST . In the limit where ε → 0,
meaning that kinmax

T << ST , and assuming all the kinetic rates are of similar order and
kinmax

T and phoT are of similar order too (then implying kinmax
T , phoT << ST ), we get a fast

dynamics for the complexes c and c′ but not for variable s1 (or s0, we are just considering
one of them here), so that the quasi-steady-state approximation can be applied (with the
exception of the initial stage of the reactions). By imposing εċ = 0 and εċ′ = 0, a little
calculation gives:

c = s0e/K, c′ = s1e
′/K ′. (5)

2



Restoration of dimensions gives the following:

[S0.kin] =
kon

koff + kcat

[S0][kin], [S1.pho] =
kron

kroff + krcat

[S1][pho]. (6)

Finally, the substitution of these expressions in the equation for S1 give an equation that
depends merely on the concentration of enzymes and free substrate as follows:

d[S1]

dt
= − kronkrcat

kroff + krcat

[pho][S1] +
konkcat

koff + kcat

[kin][S0] (7)

and here we define

k0 =
konkcat

koff + kcat

(8a)

k−1
0 =

kronkrcat

kroff + krcat

(8b)

Reformulating the equations with the new parameters, and now assuming S1 is degradable,
we obtain:

d[S0]

dt
= −k0[kin][S0] + k−1

0 [pho][S1] (9a)

d[S1]

dt
= −k−1

0 [pho][S1] + k0[kin][S0]− kd[S1] (9b)

which are the equations that we use throughout the paper.
The described condition, that the concentrations of enzymes are much lower than the

concentration of substrate, may be satisfied for the majority of in vitro assays. However, it
may be too restrictive under other conditions. Therefore, we have found another condition,
described in the following section.

ii) Hypothesis regarding the kinetic rates

In this section, we show that the complete mechanistic model can be replaced by a reduced
simplified one when the enzyme-substrate association and dissociation rate constants are
much larger than the catalysis rate constants, and hence the enzyme-substrate complexes
evolve in a fast time scale compared with the substrates.

First, we define a new variable X in such a way that X = [S1] + [S1.pho]. X satisfies the
following differential equation:

d[X]

dt
= kcat[S0.kin]− krcat[S1.pho] (10a)

The dimensionless form of X is x = s1 + c′(phoT/ST ) and then the system of equations
becomes:

dx

dt
= kcat(kin

max
T /ST )c− krcat(phoT/ST )c′ (11a)
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dc

dt
= (konST )s0e− (koff + kcat)c (11b)

dc′

dt
= (kronST )s1e

′ − (kroff + krcat)c
′ (11c)

We now consider that the rates of association and dissociation between the enzyme and
the substrate are much higher than the rate of product formation and dissociation: konST ,
kronST , koff , kroff >> kcat, krcat. In this case, the above equations for c and c′ have fast
rates in both of their two terms, while the equation for x has slow rates in both of its two
terms. Under these conditions the quasi-steady-state approximation can be applied, which
leads to the same expressions we got in Hypothesis A) for c and c′. Therefore, we can again
obtain the simplified model used in the main text.
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