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Mathematical model
We considered a closed population of size N . We divided the population into two sub-
populations of children and adults of size N1 and N2, so that N = N1 +N2. Furthermore,
within each sub-population, we divide members into high risk and low risk. Members in
each group are either susceptible, infected asymptomatic, infected symptomatic or recov-
ered and immune. In addition, people can be either vaccinated or unvaccinated.

The susceptibles are denoted by Slij , and Shij , infected asymptomatic byAlij andAhij ,
infected symptomatic by Ilij and Ihij , recovered asymptomatic by RAi, and recovered
symptomatic by Rli and Rhi where i = 1, 2 denotes the age group (children and adults,
respectively), j denotes the vaccination status (j = 0 for the unvaccinated and j = 1 for
the vaccinated), l denotes the low risk group and h denotes the high risk group. A fraction
1−ρ of the infected class will not develop symptoms and have their infectiousness reduced
by a factor m, with m ∈ [0, 1]. Infected people, both symptomatics and asymptomatics
leave the infected classes at a rate γ.

We modeled an imperfect vaccine which has three major effects [1]; a reduction in
the susceptibility, a reduction in the infectiousness and a reduction in the pathogenicity (a
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reduction in the probability symptoms in infected people). These effects are denoted in
the model by VES, VEI and VEP, respectively. Based on previous immunogenicity studies
(e.g., [2, 3, 4, 5]), we assumed that the vaccine efficacy will reach its full potential 14 days
after being administered. During this time, each vaccine efficacy will build up in time in an
exponential-like fashion and will remain constant afterward (see figure S1). The function
used is

f(t) = exp(t0.27),

where the coefficient was arbitrarily chosen for convenience.
Let p be the probability of infection given contact and cij the contact rate between

people in class i and people in class j, where i = 1 represents children and i = 2 represents
adults. We consider symmetry in contacts, so that cij = cji. Using [6] as a guide, we
computed the parameters cij to obtain the final illness attack rates given in table S3. These
attack rates satisfy the condition that the ratio of the proportion of children infected and
adults infected approximately matches the estimates for pandemic H1N1 for the United
States given in [7].

We obtain the following system of equations for the epidemic system:
Equations for susceptibles

Unvaccinated Vaccinated
dSl10

dt
= −λ1Sl10

dSl11

dt
= −λ1θSl11 (1)

dSh10

dt
= −λ1Sh10

dSh11

dt
= −λ1θSh11 (2)

dSl20

dt
= −λ2Sl20

dSl21

dt
= −λ2θSl21 (3)

dSh20

dt
= −λ2Sl20

dSh21

dt
= −λ2θSl21 (4)

Equations for infected asymptomatics

Unvaccinated Vaccinated
dAl10

dt
= λ1(1− ρ)Sl10 − γAl10

dAl11

dt
= λ1(1− ρψ)θSl11 − γAl11 (5)

dAh10

dt
= λ1(1− ρ)Sh10 − γAh10

dAh11

dt
= λ1(1− ρψ)θSh11 − γAh11 (6)

dAl20

dt
= λ2(1− ρ)Sl20 − γAl20

dAl21

dt
= −λ2(1− ρψ)θSl21 − γAl21 (7)

dAh20

dt
= λ2(1− ρ)Sh20 − γAh20

dAh21

dt
= λ2(1− ρψ)θSh21 − γAh21 (8)
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Equations for infected symptomatics

Unvaccinated Vaccinated
dIl10

dt
= λ1ρSl10 − γIl10

dIl11

dt
= λ1ρψθSl11 − γIl11 (9)

dIh10

dt
= λ1ρSh10 − γIh10

dIh11

dt
= λ1ρψθSh11 − γIh11 (10)

dIl20

dt
= λ2ρSl20 − γIl20

dIl21

dt
= λ2ρψθSl21 − γIl21 (11)

dIh20

dt
= λ2ρSh20 − γIh20

dIh21

dt
= λ2ρψθSh21 − γIh21 (12)

Equations for the recovered

dRA1

dt
= γ(Al10 + Al11 + Ah10 + Ah11) (13)

dRA2

dt
= γ(Al20 + Al21 + Ah20 + Ah21) (14)

dRIl1
dt

= γ(Il10 + Il11) (15)

dRIh1

dt
= γ(Ih10 + Ih11) (16)

dRIl2
dt

= γ(Il20 + Il21) (17)

dRIh2

dt
= γ(Ih20 + Ih21) (18)

where θ = 1− VES φ = 1− VEI and ψ = 1− VEP. The forces of infection are given by

λ1 =
pc11

N1

(
m(Al10 + Ah10) +mφ(Al11 + Ah11) + Il10 + Ih10 + φ(Il11 + Ih11)

)
+

pc12

N2

(
m(Al20 + Ah20) +mφ(Al21 + Ah21) + Il20 + Ih20 + φ(Il21 + Ih21)

)
,

and

λ2 =
pc21

N1

(
m(Al10 + Ah10) +mφ(Al11 + Ah11) + Il10 + Ih10 + φ(Il11 + Ih11)

)
+

pc22

N2

(
m(Al20 + Ah20) +mφ(Al21 + Ah21) + Il20 + Ih20 + φ(Il21 + Ih21)

)
.
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The parameter values used are given in table S2.
Given the variability of the estimates for the basic reproduction number for pandemic

influenza H1N1 [8, 9, 10], we considered three different basic reproduction numbersR0 =
1.4, R0 = 1.6 and R0 = 1.8. The basic reproduction numbers were computed following
the approach given in [11] and [12, 13]. We varied the value of p, the probability of
transmission, to obtain the desired value of R0.

Implementation of vaccination
We considered six different possibilities for starting vaccination: 1. the first day of the epi-
demic, 2. very early on in the epidemic, 3. before the exponential phase of the epidemic,
4. during the exponential phase of the epidemic, 5. just before the peak of the epidemic,
and 6. just after the peak of the epidemic. Since for each R0 the speed of the epidemic is
different, we manually picked, for each R0, six starting times corresponding to each of the
six possibilities. Table S1 summarizes these times.

Numerical implementation was done as follows. If we were to vaccinate fractions fl1

and fh1 of children low and high risk and fractions fl2 and fh2 of adults low and high risk
starting on day τ , then we would run the system up to day τ , and vaccinate each group by
removing the corresponding fraction from each of the susceptible classes and adding it to
the respective vaccinated class. Hence we have, corresponding to day τ , a time step t with
the following conditions:

Sl10(t+ 1) = (1− fl1)Sl10(t) Sl11(t+ 1) = fl1Sl10(t)

Sh10(t+ 1) = (1− fh1)Sh10(t) Sh11(t+ 1) = fh1Sh10(t)

Sl20(t+ 1) = (1− fl2)Sl20(t) Sl21(t+ 1) = fl2Sl20(t)

Sh20(t+ 1) = (1− fh2)Sh20(t) Sh21(t+ 1) = fh2Sh20(t).

Optimization
We define a vaccination control vector fff = (fl1, fh1, fl2, fh2) where fl1 and fh1 are the
fractions of vaccinated children at low and high risk, respectively, and fl2 and fh2 are the
fractions of vaccinated adults at low and high risk, respectively.

We define an objective function g(fff) = g(fl1, fh1, fl2, fh2) as follows:

g(fff) = g(fl1, fh1, fl2, fh2) = a1l ·RIl1 + a1h ·RIh1+ (19)
a2l ·RIl1 + a2h ·RIh2
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where ail is the fraction of deaths or hospitalizations in the infected symptomatic low-risk
subgroup, and aih is the fraction of deaths or hospitalizations in the infected symptomatic
high-risk subgroup (i = 1, 2). This function is the expected number of deaths or hospital-
izations in each subgroup (i.e., children, low and high risk; adults, low and high risk) and
is computed as a weighted average, with weights defined in table S2. Then, we have the
optimization problem

min
fff
g(f ∗l1, f

∗
h1, f

∗
l2, f

∗
h2) = g(f ∗f ∗f ∗), (20)

(21)

subject to the constraints

0 ≤ fl1, fh1, fl2, fh2 ≤ 1,

fl1(1− δ1)N1 + fh1δ1N1 + fl2(1− δ2)N2 + fh2δ2N2 = T,

where T is the total number of vaccine doses available, and δ1 and δ2 are the fractions of
children and adults at high risk, respectively. Using a line search algorithm found in the
optimization package in MATLAB, we were able to find the optimal vaccine distribution
under each scenario considered.

Results
The tables S4 and S5 summarize the results for the optimal strategy in a DC for a basic
reproduction number of 1.4 and 1.8 respectively. Similarly, the tables S6-S9 summarize
the results for a LDC, both with influenza-related mortality and hospitalizations unadjusted
(tables S6 and S8) and adjusted (tables S7 and S9).

Sensitivity analysis
We performed sensitivity analysis for the basic reproduction numbers (figure S2). As the
basic reproduction number increases, the optimal strategy shifts in general from low-risk
children to high-risk adults. We also performed sensitivity analysis for the parameters
that account for the excess of influenza-related mortality and hospitalizations in a LDC. In
order to do this, we repeated the analysis for R0 = 1.6 where these multipliers were taken
to be half of the ones considered in table S2 (increase in the influenza-related mortality by a
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factor of four instead of eight in children and 1.5 instead of three in adults). Figures S3 and
S4 show the percentage of the total number of doses used in each group in a less developed
country where the multipliers were not adjusted, (left panel), adjusted as described above
(center panel) and adjusted as described in the main text (right panel). Figure S3 shows
the percentage of doses used when there is enough vaccine to cover 15% of the population
and the optimizer was set to minimize hospitalizations, whereas figure S4, there is enough
vaccine to cover 25% of the population and the optimizer was set to minimize mortality. In
both cases, increasing these multipliers, that is, increasing the excess of influenza-related
mortality or hospitalizations tends to favor the high-transmission group, the children at
low risk.
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