Supplementary material for: Evaluating the cost-effectiveness of pre-exposure prophylaxis (PrEP) and its impact on HIV-1 transmission in South Africa

Carel Pretorius¹, John Stover¹, Lori Bollinger¹, Nicolas Bacaër², Brian Williams³

1 Futures Institute, Glastonbury, Connecticut, USA

2 IRD (Institut de Recherche pour le Developpement), Bondy, France

3 SACEMA, DST/NRF Centre of Excellence in Epidemiological Modelling and Analysis,

Stellenbosch University, Stellenbosch, South Africa

* E-mail: cpretorius@futuresinstitute.org

Mathematical model

The mathematical model underlying this analysis is a simple extension of the model developed and parameterized in [1]. Parameter descriptions for this model are given in table S1, while parameter values are listed in Tab. 1 [1]. Parameter description and values related to inclusion of PrEP in the model descriptions are given in table S2.

It consists of only a few compartments which are all structured by age. Throughout the index k refers either to females (k = f) or to males (k = m). Let:

- $S_k(t, x)$ be the susceptible population of sex k aged x ($x \ge 1$, age x corresponding to those people whose exact age is between x 1 and x) at time t ($t \ge t_0$).
- $P_k(t, x, y)$ be the HIV_ population of sex k aged x at time t that have received PrEP for y years.
- $I'_k(t, x, y)$ be the population of sex k aged x at time t that has been HIV₊ for y years $(1 \le y \le x)$ who are infected and receiving PrEP.
- $I_k(t, x, y)$ be the population of sex k aged x at time t that has been HIV₊ for y years $(1 \le y \le x)$ who are not receiving ART or PrEP.
- $A_k(t, x, y)$ is the HIV₊ population of sex k aged x at time t that is receiving ART and that spent y years $(1 \le y < x)$ infected but without treatment.
- $N_k(t,x) = S_k(t,x) + P(t,x) + I'_k(t,x) + I_k(t,x) + A_k(t,x)$ where, with a slight abuse of notation,

$$\begin{split} P_k(t,x) &= \sum_{y \le x} P_k(t,x,y) \;, \quad I'_k(t,x) = \sum_{y \le x} I'_k(t,x,y) \\ I_k(t,x) &= \sum_{y \le x} I_k(t,x,y) \;, \quad A_k(t,x) = \sum_{y < x} A_k(t,x,y) \end{split}$$

Keeping the notations of [1], set $J_k(t,x) = I_k(t,x) + \varepsilon \left(I'_k(t,x) + A_k(t,x)\right)$. The force of infection is assumed to be

$$\lambda_f(t,x) = 1 - \exp\left(-p_f \left(1 - c(t,x)\right) r(x) \sum_z s(x,z) J_m(t,z) / N_m(t,z)\right)$$
$$\lambda_m(t,x) = 1 - \exp\left(-p_m \sum_z (1 - c(t,z)) r(z) s(z,x) J_f(t,z) / N_m(t,x)\right)$$

for non PrEP users and

$$\lambda'_{f}(t,x) = 1 - \exp\left(-p_{f}\left(1-\varphi\right)(1-c'(t,x))r(x)\sum_{z}s(x,z)J_{m}(t,z)/N_{m}(t,z)\right)$$
$$\lambda'_{m}(t,x) = 1 - \exp\left(-p_{m}\sum_{z}(1-\varphi)(1-c'(t,z))r(z)s(z,x)J_{f}(t,z)/N_{m}(t,x)\right)$$

for PrEP users. Let θ'_k be the PrEP starting rate for people whose age is between x - 1 and x. The ART starting rate is assumed to be

$$\theta(t, x, y) = h_2(t) \ \rho(x, y) \ \psi/(1 - \psi) + h_3(t) \ \tau \tag{1}$$

Notice that under the current ART program ($h_2 = 1$ and $h_3 = 0$), HIV₊ people are subject to two competing risks: the risk of dying at a rate $\rho(x, y)$, and the risk (the chance) of starting ART at a rate $\rho(x, y) \psi/(1 - \psi)$. Thus a fraction ψ starts ART.

The rate at which PrEP individuals start ART is assumed to be higher:

$$\theta^*(t, x, y) = \nu \,\theta(t, x, y) \,\nu > 1$$

to account for the likelihood that PrEP users will undergo regular screening and thus be more likely to enroll for ART.

Our assumptions regarding the initial condition $t = t_0$ are as follows. For all $1 \le x \le \omega$, we assume that $S_k(t_0, x) = N_k(t_0, x)$ except that $S_m(t_0, x_0) = N_m(t_0, x_0) - 1$. For all $1 \le y \le x \le \omega$, we assume that $I_k(t_0, x, y) = 0$ except that $I_m(t_0, x_0, 1) = 1$. Finally, $A_k(t_0, x, y) = 0$ for all $1 \le y < x \le \omega$.

For $t \ge t_0$ and $1 \le x \le \omega - 1$, the susceptible population is given by

$$S_k(t+1,1) = b(t) (1 - \pi(t)),$$

$$S_k(t+1,x+1) = (1 - \mu_k(x))(1 - \lambda_k(t,x))(1 - \theta'_k(t,x))S_k(t,x)$$

$$+ (1 - \mu_k(x)) (1 - \lambda'_k(t,x)) \phi' P_k(t,x)$$

The PrEP receiving population is given for $t \ge t_0$ and $1 \le y \le x$ by

$$P_k(t+1, x+1, 1) = (1 - \mu_k(x)) (1 - \lambda_k(t, x)) \theta'_k(t, x) S_k(t, x),$$

$$P_k(t+1, x+1, y+1) = (1 - \mu_k(x)) (1 - \lambda'_k(t, x)) (1 - \phi') P_k(t, x, y)$$

The PrEP receiving population who are infected is given for $t \ge t_0$ and $1 \le y \le x \le \omega - 1$ by

$$\begin{split} I'_k(t+1,x+1,1) &= (1-\mu_k(x))\,\lambda'_k(t,x)\,(1-\phi')\,P_k(t,x) \\ &+ (1-\mu_k(x))\lambda_k(t,x)\theta'_k(t,x)\,S_k(t,x) \\ I'_k(t+1,x+1,y+1) &= (1-\mu_k(x))\,(1-\rho(x,y))\,(1-\phi'_+)\,(1-\theta^*(t,x,y))\,I'_k(t,x,y) \end{split}$$

Here $\phi'_+ \ge \phi$ is the rate at which HIV₊ PrEP users will discontinue PrEP use. The infected population without treatment is given for $t \ge t_0$ and $1 \le y \le x \le \omega - 1$ by

$$\begin{split} I_k(t+1,1,1) &= b(t) \, \pi(t), \\ I_k(t+1,x+1,1) &= (1-\mu_k(x)) \, \lambda_k(t,x) \, (1-\theta'_k(x)) \, S_k(t,x), \\ &+ (1-\mu_k(x)) \, \lambda'_k(t,x) \, \phi' \, P_k(t,x,y) \\ I_k(t+1,x+1,y+1) &= (1-\mu_k(x)) (1-\rho(x,y)) (1-\theta(t,x,y)) \, I_k(t,x,y) \\ &+ (1-\mu_k(x)) \, \phi \, (1-\sigma(y)) \, A_k(t,x,y) \\ &+ (1-\mu_k(x)) (1-\rho(x,y)) \, \phi'_+ \, (1-\theta^*(t,x,y)) \, I'_k(t,x,y) \end{split}$$

The ART-treated population is given for $t \ge t_0$ and $1 \le y \le x \le \omega - 1$ by

$$A_{k}(t+1, x+1, y) = (1 - \mu_{k}(x)) (1 - \phi) (1 - \sigma(y)) A_{k}(t, x, y) + (1 - \mu_{k}(x)) (1 - \rho(x, y)) \theta(t, x, y) I_{k}(t, x, y) + (1 - \mu_{k}(x)) (1 - \rho(x, y)) (1 - \phi'_{+}) \theta^{*}(t, x, y) I'_{k}(t, x, y)$$

setting $A_k(t, 1, 1) = 0$ for all t for convenience.

Acknowledgments

References

1. Bacaer N, Pretorius C, Auvert B (2010) An age-structured model for the potential impact of generalized access to antiretrovirals on the South African HIV epidemic. Bull Math Biol doi:10.1007/s11538-010-9535-2.

Tables

 Table 1. Notations and parameter description. "M2C" stands for mother-to-child, "prob." for probability.

k	sex (female or male)
t_0	year of introduction of HIV
t	time, $t \ge t_0$
ω	maximum age considered
x	age, $1 \le x \le \omega$
y	time since infection without ART
x_0	age of first infected woman
$b(t_0)$	annual male (and female) births at $t = t_0$
p_f	HIV transmission prob. (man to woman)
p_m	HIV transmission prob. (woman to man)
q_0	M2C transmission prob.
q_1	M2C transmission prob. with PMTCT
ε	relative infectiousness of people on ART
ϕ	ART drop-out
au	annual proportion tested for HIV
$N_k(t_0, x)$	age pyramid at $t = t_0$
$\mu_k(x)$	death rate if HIV_{-}
$b(t)/b(t_0)$	changing birth rate
$\beta(x)$	normalized female fertility
u	under-reporting of male sexual partners
u r(x)	reported turnover of male sexual partners
s(x, y)	choice of male sexual partner
c(t, x)	condom use
$\rho(x,y)$	AIDS mortality
$\rho_1(y)$	adult AIDS mortality
$\sigma(y)$	mortality under ART
$h_1(t)$	access to PMTCT
$h_2(t)$	access to current ART program
$h_3(t)$	access to the "test and treat" strategy
ψ	proportion starting ART in current program

Table 2. Extension to notations and parameters used in [1]. PrEP parameters used in Section: "Universal PrEP and UTT: comparative impact"

Notational parameters	
k: sex (female or male)	f or m
t_0 : year of introduction of HIV	
t: time	$t \ge t_0$
ω : maximum age considered	
x: age	$1 \le x \le \omega$
y: disease duration	$1 \le y \le \omega$
PrEP sub-model	
θ'_k : access to PrEP	20% per year
$\theta(t, x, y)$: access to ART for non-PrEP users	eq. 1
$\theta^* = \nu \theta$: access to ART for PrEP users	$\nu = 1.5$
φ : efficacy of PrEP	90%
ϕ' : PrEP drop-out	1.5% per year
ϕ'_+ : PrEP discontinuation rate	100% per year
$c'_k(t,x)$: condom substitution for those using PrEP	0%