Supplementary material for: Evaluating the cost-effectiveness of pre-exposure prophylaxis (PrEP) and its impact on HIV-1 transmission in South Africa

Carel Pretorius ${ }^{1}$, John Stover ${ }^{1}$, Lori Bollinger ${ }^{1}$, Nicolas Bacaër ${ }^{2}$, Brian Williams ${ }^{3}$
1 Futures Institute, Glastonbury, Connecticut, USA
2 IRD (Institut de Recherche pour le Developpement), Bondy, France
3 SACEMA, DST/NRF Centre of Excellence in Epidemiological Modelling and Analysis, Stellenbosch University, Stellenbosch, South Africa

* E-mail: cpretorius@futuresinstitute.org

Mathematical model

The mathematical model underlying this analysis is a simple extension of the model developed and parameterized in [1]. Parameter descriptions for this model are given in table S1, while parameter values are listed in Tab. 1 [1]. Parameter description and values related to inclusion of PrEP in the model descriptions are given in table S2.

It consists of only a few compartments which are all structured by age. Throughout the index k refers either to females $(k=f)$ or to males $(k=m)$. Let:

- $S_{k}(t, x)$ be the susceptible population of sex k aged $x(x \geq 1$, age x corresponding to those people whose exact age is between $x-1$ and $x)$ at time $t\left(t \geq t_{0}\right)$.
- $P_{k}(t, x, y)$ be the HIV _ population of sex k aged x at time t that have received PrEP for y years.
- $I_{k}^{\prime}(t, x, y)$ be the population of sex k aged x at time t that has been HIV_{+}for y years $(1 \leq y \leq x)$ who are infected and receiving PrEP.
- $I_{k}(t, x, y)$ be the population of sex k aged x at time t that has been HIV_{+}for y years $(1 \leq y \leq x)$ who are not receiving ART or PrEP.
- $A_{k}(t, x, y)$ is the HIV_{+}population of sex k aged x at time t that is receiving ART and that spent y years $(1 \leq y<x)$ infected but without treatment.
- $N_{k}(t, x)=S_{k}(t, x)+P(t, x)+I_{k}^{\prime}(t, x)+I_{k}(t, x)+A_{k}(t, x)$ where, with a slight abuse of notation,

$$
\begin{array}{ll}
P_{k}(t, x)=\sum_{y \leq x} P_{k}(t, x, y), & I_{k}^{\prime}(t, x)=\sum_{y \leq x} I_{k}^{\prime}(t, x, y) \\
I_{k}(t, x)=\sum_{y \leq x} I_{k}(t, x, y), & A_{k}(t, x)=\sum_{y<x} A_{k}(t, x, y)
\end{array}
$$

Keeping the notations of [1], set $J_{k}(t, x)=I_{k}(t, x)+\varepsilon\left(I_{k}^{\prime}(t, x)+A_{k}(t, x)\right)$. The force of infection is assumed to be

$$
\begin{aligned}
& \lambda_{f}(t, x)=1-\exp \left(-p_{f}(1-c(t, x)) r(x) \sum_{z} s(x, z) J_{m}(t, z) / N_{m}(t, z)\right) \\
& \lambda_{m}(t, x)=1-\exp \left(-p_{m} \sum_{z}(1-c(t, z)) r(z) s(z, x) J_{f}(t, z) / N_{m}(t, x)\right)
\end{aligned}
$$

for non PrEP users and

$$
\begin{aligned}
\lambda_{f}^{\prime}(t, x) & =1-\exp \left(-p_{f}(1-\varphi)\left(1-c^{\prime}(t, x)\right) r(x) \sum_{z} s(x, z) J_{m}(t, z) / N_{m}(t, z)\right) \\
\lambda_{m}^{\prime}(t, x) & =1-\exp \left(-p_{m} \sum_{z}(1-\varphi)\left(1-c^{\prime}(t, z)\right) r(z) s(z, x) J_{f}(t, z) / N_{m}(t, x)\right)
\end{aligned}
$$

for PrEP users. Let θ_{k}^{\prime} be the PrEP starting rate for people whose age is between $x-1$ and x. The ART starting rate is assumed to be

$$
\begin{equation*}
\theta(t, x, y)=h_{2}(t) \rho(x, y) \psi /(1-\psi)+h_{3}(t) \tau \tag{1}
\end{equation*}
$$

Notice that under the current ART program ($h_{2}=1$ and $h_{3}=0$), HIV + people are subject to two competing risks: the risk of dying at a rate $\rho(x, y)$, and the risk (the chance) of starting ART at a rate $\rho(x, y) \psi /(1-\psi)$. Thus a fraction ψ starts ART.

The rate at which PrEP individuals start ART is assumed to be higher:

$$
\theta^{*}(t, x, y)=\nu \theta(t, x, y) \nu>1
$$

to account for the likelihood that PrEP users will undergo regular screening and thus be more likely to enroll for ART.

Our assumptions regarding the initial condition $t=t_{0}$ are as follows. For all $1 \leq x \leq \omega$, we assume that $S_{k}\left(t_{0}, x\right)=N_{k}\left(t_{0}, x\right)$ except that $S_{m}\left(t_{0}, x_{0}\right)=N_{m}\left(t_{0}, x_{0}\right)-1$. For all $1 \leq y \leq x \leq \omega$, we assume that $I_{k}\left(t_{0}, x, y\right)=0$ except that $I_{m}\left(t_{0}, x_{0}, 1\right)=1$. Finally, $A_{k}\left(t_{0}, x, y\right)=0$ for all $1 \leq y<x \leq \omega$.

For $t \geq t_{0}$ and $1 \leq x \leq \omega-1$, the susceptible population is given by

$$
\begin{aligned}
S_{k}(t+1,1)= & b(t)(1-\pi(t)) \\
S_{k}(t+1, x+1)= & \left(1-\mu_{k}(x)\right)\left(1-\lambda_{k}(t, x)\right)\left(1-\theta_{k}^{\prime}(t, x)\right) S_{k}(t, x) \\
& +\left(1-\mu_{k}(x)\right)\left(1-\lambda_{k}^{\prime}(t, x)\right) \phi^{\prime} P_{k}(t, x)
\end{aligned}
$$

The PrEP receiving population is given for $t \geq t_{0}$ and $1 \leq y \leq x$ by

$$
\begin{aligned}
P_{k}(t+1, x+1,1) & =\left(1-\mu_{k}(x)\right)\left(1-\lambda_{k}(t, x)\right) \theta_{k}^{\prime}(t, x) S_{k}(t, x), \\
P_{k}(t+1, x+1, y+1) & =\left(1-\mu_{k}(x)\right)\left(1-\lambda_{k}^{\prime}(t, x)\right)\left(1-\phi^{\prime}\right) P_{k}(t, x, y)
\end{aligned}
$$

The PrEP receiving population who are infected is given for $t \geq t_{0}$ and $1 \leq y \leq x \leq \omega-1$ by

$$
\begin{aligned}
I_{k}^{\prime}(t+1, x+1,1)= & \left(1-\mu_{k}(x)\right) \lambda_{k}^{\prime}(t, x)\left(1-\phi^{\prime}\right) P_{k}(t, x) \\
& +\left(1-\mu_{k}(x)\right) \lambda_{k}(t, x) \theta_{k}^{\prime}(t, x) S_{k}(t, x) \\
I_{k}^{\prime}(t+1, x+1, y+1)= & \left(1-\mu_{k}(x)\right)(1-\rho(x, y))\left(1-\phi_{+}^{\prime}\right)\left(1-\theta^{*}(t, x, y)\right) I_{k}^{\prime}(t, x, y)
\end{aligned}
$$

Here $\phi_{+}^{\prime} \geq \phi$ is the rate at which HIV ${ }_{+} \operatorname{PrEP}$ users will discontinue PrEP use. The infected population without treatment is given for $t \geq t_{0}$ and $1 \leq y \leq x \leq \omega-1$ by

$$
\begin{aligned}
I_{k}(t+1,1,1)= & b(t) \pi(t) \\
I_{k}(t+1, x+1,1)= & \left(1-\mu_{k}(x)\right) \lambda_{k}(t, x)\left(1-\theta_{k}^{\prime}(x)\right) S_{k}(t, x) \\
& +\left(1-\mu_{k}(x)\right) \lambda_{k}^{\prime}(t, x) \phi^{\prime} P_{k}(t, x, y) \\
I_{k}(t+1, x+1, y+1)= & \left(1-\mu_{k}(x)\right)(1-\rho(x, y))(1-\theta(t, x, y)) I_{k}(t, x, y) \\
& +\left(1-\mu_{k}(x)\right) \phi(1-\sigma(y)) A_{k}(t, x, y) \\
& +\left(1-\mu_{k}(x)\right)(1-\rho(x, y)) \phi_{+}^{\prime}\left(1-\theta^{*}(t, x, y)\right) I_{k}^{\prime}(t, x, y)
\end{aligned}
$$

The ART-treated population is given for $t \geq t_{0}$ and $1 \leq y \leq x \leq \omega-1$ by

$$
\begin{aligned}
A_{k}(t+1, x+1, y)= & \left(1-\mu_{k}(x)\right)(1-\phi)(1-\sigma(y)) A_{k}(t, x, y) \\
& +\left(1-\mu_{k}(x)\right)(1-\rho(x, y)) \theta(t, x, y) I_{k}(t, x, y) \\
& +\left(1-\mu_{k}(x)\right)(1-\rho(x, y))\left(1-\phi_{+}^{\prime}\right) \theta^{*}(t, x, y) I_{k}^{\prime}(t, x, y)
\end{aligned}
$$

setting $A_{k}(t, 1,1)=0$ for all t for convenience.

Acknowledgments

References

1. Bacaer N, Pretorius C, Auvert B (2010) An age-structured model for the potential impact of generalized access to antiretrovirals on the South African HIV epidemic. Bull Math Biol doi:10.1007/s11538-010-9535-2

Tables

Table 1. Notations and parameter description. "M2C" stands for mother-to-child, "prob." for probability.

k	sex (female or male)
t_{0}	year of introduction of HIV
t	time, $t \geq t_{0}$
ω	maximum age considered
x	age, $1 \leq x \leq \omega$
y	time since infection without ART
x_{0}	age of first infected woman
$b\left(t_{0}\right)$	annual male (and female) births at $t=t_{0}$
p_{f}	HIV transmission prob. (man to woman)
p_{m}	HIV transmission prob. (woman to man)
q_{0}	M2C transmission prob.
q_{1}	M2C transmission prob. with PMTCT
ε	relative infectiousness of people on ART
ϕ	ART drop-out
τ	annual proportion tested for HIV
$N_{k}\left(t_{0}, x\right)$	age pyramid at $t=t_{0}$
$\mu_{k}(x)$	death rate if HIV_
$b(t) / b\left(t_{0}\right)$	changing birth rate
$\beta(x)$	normalized female fertility
u	under-reporting of male sexual partners
$u r(x)$	reported turnover of male sexual partners
$s(x, y)$	choice of male sexual partner
$c(t, x)$	condom use
$\rho(x, y)$	AIDS mortality
$\rho_{1}(y)$	adult AIDS mortality
$\sigma(y)$	mortality under ART
$h_{1}(t)$	access to PMTCT
$h_{2}(t)$	access to current ART program
$h_{3}(t)$	access to the "test and treat" strategy
ψ	proportion starting ART in current program

Table 2. Extension to notations and parameters used in [1]. PrEP parameters used in Section: "Universal PrEP and UTT: comparative impact"

Notational parameters	
$k:$ sex (female or male)	f or m
$t_{0}:$ year of introduction of HIV	$t \geq t_{0}$
$t:$ time	
$\omega:$ maximum age considered	$1 \leq x \leq \omega$
$x:$ age	$1 \leq y \leq \omega$
$y:$ disease duration	
PrEP sub-model	20% per year
$\theta_{k}^{\prime}:$ access to PrEP	eq. 1
$\theta(t, x, y):$ access to ART for non-PrEP users	$\nu=1.5$
$\theta^{*}=\nu \theta:$ access to ART for PrEP users	90%
$\varphi:$ efficacy of PrEP	1.5% per year
$\phi^{\prime}: \operatorname{PrEP}$ drop-out	100% per year
$\phi_{+}^{\prime}: \operatorname{PrEP}$ discontinuation rate	0%
$c_{k}^{\prime}(t, x):$ condom substitution for those using PrEP	0%

