

1

SUPPORTING INFORMATION

Accumulative Difference Image Protocol for Particle

Tracking in Fluorescence Microscopy tested in Mouse Lymphonodes.

Carlo E. Villa1, Michele Caccia1, Laura Sironi1, Laura D’Alfonso1, Maddalena Collini1,
Ilaria Rivolta2, Giuseppe Miserocchi2, Tatiana Gorletta3, Ivan Zanoni3, Francesca
Granucci3 and Giuseppe Chirico1,*,

1Dipartimento di Fisica, Università degli Studi di Milano Bicocca, Milano, Italy.
2Dipartimento di Medicina Sperimentale, Università degli Studi di Milano Bicocca, Monza,
Italy.

3Dipartimento di Biotecnologie e Bioscienze, Università degli Studi di Milano Bicocca,
Milano, Italy.

Description of the code and instruction for its use.

The routines have been tested on MATLAB R2009a (Mathworks Inc.) with Image Processing Toolbox.

The algorithm is implemented in ten steps or phases (from A to K) that are coded in different matlab files.

Several tools are provided in the form of additional routines, to provide estimates of the threshold on

the images, to test the output and to help the user in selecting the targets and to reconstruct trajectories

in the most critical cases in which some trajectories are intersecting each other. The main routines are

devoted to the settings of the filters for the images, the compilation of the ADI image, the visualization of

the output and the test on the final output. At the end of each step, the user can check for the output

and feed it to the next routine. The routines, that are described hereafter, are set for a size 256x256 of

the images.

In all the routines the input parameters are set in the first lines of the routine. The end of this input

section is marked by the comment line:“%%%%%% END OF INPUT”. Throughout this document the

variables are written in Courier New 11, and the name of the routines are in Italic Calibri 11.

All the routines are available as Online Additional Material in the code_beta.rar file.

PHASE A: FILTERS’ SETTINGS

A_IMAGEFILTERS_BETA.M

The first routine applies the filters to the images in the stack. The routine uses the routine

rd_img16_gib_gamma.m to read in the series of tiff images.

2

Input:

• The path and the name of the original images is stored in the matrix “dafiltrare”. The name of

the stack must be inserted in the first line. For example if one wants to read the stack of images

“scan1.tif” the first line of the routines reads:

 dafiltrare = rd_img16_gib('scan1.tif');
• The number of the last frame to be read from the stack is stored in the variable numero.

• The number of the first frame to be read from the stack is stored in the variable init_frame.

• The frame rate with which the reading of the stack is performed is stored in the variable fr.

Example: if fr = 2, one every two frames are read in. Please notice that the variable numero is

redefined in this routine, and so used in the subsequent routines, as:

 numero = (numero - init_frame)/fr + 1;

 Therefore the variable numero contains, in the rest of the code, the total number of frames to be

analyzed.

• The threshold value is stored in the variable soglia. After a first trial with this routine, the value

of the threshold can and should be refined by means of the routine A_test_thresholds.m.

• The number of pixels that defines the outer edge of the image that is excluded from the analysis

is stored in the variable frame_edge. The default value is frame_edge =5.

• The matrix dimension for the mean and maximum filters is stored in the variable

larghezzaintornomedia: this value must be odd and greater than 1.

Output:

There is no specific output on the screen. The main internal output is the matrix bw3(N,M,K), that

stores the binary stack of images. N and M are as default set N=M=256. The index K is equal to the

input number of images to be analyzed, K=numero.

Related routines (phase A).

A_test_thresholds.m. This routine is designed to help the user to estimate of the threshold value by

applying iteratively the main algorithm, as used in A_binarizzaprova.m, to the first “numero_t” images

of the stack. Notice that this routine must be run after running for the first time A_binarizzaprova.m,

because the stack of images is read into the memory by this routine. The routine computes the average

number of targets segmented in the first “numero_t” images of the stack with an increasing value of the

threshold from “soglia” to “soglia + num_iter*incrementosoglia”. This computation is

can be limited to a Region of Interest (ROI) delimited by rectangle with vertices, (x0,y0)‐(x1,y1).

Input

3

• numero_t: number of images on which the number of targets segmented (default is 5) is

averaged.

• (x0,y0) – (x1,y1): coordinates of the box on which the computation of the average number

of segmented targets is done (default is (30,120) – (80,170));

• num_iter: number of values of the threshold on which (default is 20);

• soglia: is the starting value of the threshold;

• incrementosoglia: increment of the variable soglia.

While running, the routine writes on the prompt screen the actual value of the threshold used. The user

can visually choose which one is the right choice. In the results reported in the Ms. we usually preferred

to visually count the target in a specific area of interest and check the identified target.

Output: the routine stores in the matrix bw4(256,256,numero,num_iter) the segmented images.

The i‐th segmented image obtained with the threshold value, soglia + k*incrementosoglia,

is stored in the matrix bw4(:,:,i,k). This routine opens two figures that reports the first image

(colormap=jet) to be segmented and the corresponding image segmentation obtained with the value of

the threshold = soglia + incrementosoglia*num_iter/2 (colormap=hot).

The estimate of the threshold can also be gained from the plot of the vector testsoglia(num_iter,2). This

vector is plotted in the figure 5 at the end of the run.

• testsoglia(num_iter,2): contains the average number of segmented targets on the first

numero images of the stack (testsoglia(:,2)) as a function of the threshold

(testsoglia(:,1)).

• Bw4(:,:,i,k): segmented images. The i‐th segmented image obtained with the threshold

value, soglia + k*incrementosoglia, is stored in the matrix bw4(:,:,i,k).

• Figures.

Fig.1. Original first image (colormap jet).

Fig.2. First segmented image with threshold=soglia.

Fig.3 First segmented image with threshold=soglia + num_iter*incrementosoglia/2.

Fig.4 First segmented image with threshold=soglia + num_iter*incrementosoglia.

Fig.5. Plot of the average number of the segmented targets as a function of the threshold.

A_draw_binaries.m. To test the output of A_test_thresholds.m the user runs this routine which provides a

series of figures related to the last image segmented in the series, that is the image number=numero of

4

the stack. The variable numero, that assign the total number of images to be read and analyzed, is set

by the user in the first lines of the A_imagefilters.m.

• Fig.1: Image after the Minimum filter application.

• Fig.2: Image after the threshold filter

• Fig.3: figure after the Mean filter application

• Fig.4: Image after the maximum filter application

• Fig.5: original image

PHASE B: COMPILE ADI

B_DADI.M

This routine builds the ADI from the time stack.

Input.

g: total number of images of which the ADI matrix must be built. The default value is g = numero. It

can be changed in the first lines of the routine.

Output:

vel(256,256,g): this is the ADI matrix for the segmented targets and is built from the binary image

stack bw3.

PHASE C: COMPILE THE TRAJECTORIES.

C_COORD_VECTOR.M

This routines actually creates the matrix in which the trajectories of all the segmented targets are stored.

These are written as (x,y) coordinates and the corresponding passage time, for each target. The targets

that are followed in time are those which are segmented every incrementostep images in the

original time stack. This option is essential for the pathological cases of loops or intersecting or

interwound trajectories. These cases are then built by composing sub‐trajectories detected from

different starting images chosen every incrementostep.

During this routine the matrix vel is duplicated into vel2, since the vel matrix is destroyed during the

tracking procedure.

Input.

5

lunghezza: this parameter sets a threshold to the minimum length in pixel of the trajectories that are

stored. The default value is 20.

incrementostep: The targets which are followed in time are those which are segmented every

incrementostep images in the original time stack. If incrementostep >= numero, the tracking

algorithm is performed only once through the whole stack. If incrementostep < numero, the

tracking algorithm is performed (numero/incrementostep -1) times, starting from one every

incrementostep frames through the whole stack.

Output.

The main output of these routines is the matrix “fine”. This is the matrix where the software stores all

the data that define the trajectories of all the identified targets. The number of segmented targets is

stored in the variable contatore1, that is also the screen output of the routine. The fine matrix is

stored for the i‐th target (1 ≤ i ≤ contatore1) as:

• fine(:,1,i): passage times on the (x,y) pixel.

• fine(:,2,i): X coordinate of the pixel at which the target was found at this passage time.

• fine(:,3,i): Y coordinate of the pixel at which the target was found at this passage time.

The number of items in the first dimension of the matrix fine depends on the target (and therefore on

the index i), since it is the length of its trajectory.

NOTE: It is important to notice that not all the targets found by this routine corresponds to really

different targets in the image, since all the targets that are found every incrementostep images are

followed in the ADI image. The variable contatore1 stores the number of all the targets that have

been segmented on all the numero/incrementostep images, irrespective of the control on the

length of the trajectory. This can be a large number. However the size of the third component of the

matrix fine is the value contatore, that is typically much smaller than contatore1, due to the

constraint imposed on the minimum length of the trajectory (that can be relaxed by the user acting on

the variable lunghezza).

Related routines (phase C).

C_Test_Visualize_Vel.m. This routine provides the user with a fast parallel picture of the trajectories of all

the targets that have been segmented, whose number is stored in the variable contatore. This image

is opened in the window entitled “Parallel Visualization of the trajectories”. The color codes, in increasing

levels of green, the passage time of the target in the pixels, normalized to the length of the trajectory for

6

each target. The magenta point on each trajectory indicates the starting pixel of a trajectory that origins

from the very first image of the stack. Two figures are opened with a different choice of background for

better evaluating the whole development of the trajectory. In this figures no number of targets is

reported (see phase D for target number encoding).

C_Test_length.m. The length of each target’s trajectory (in pixels) is provided to the user by the routine

lunghezzaFINE.m. that can be run after having the compilation of the matrix fine. The length of the

trajectory for the i‐th target is stored, after the run of lunghezzaFINE.m, in the variable

contatorepunti(i).

Input:

 max_duration: this is the maximum duration of the trajectory that is tested. This value can be

equal to the total number of frames (numero).

Output:

The figure reporting the plot of the trajectory duration as a function of the number of the target.

C_ee_FINE.m. This routine computes for each target the end‐to‐end distance of the trajectory and stores

it in the vector contatorepunti2. This is the most valuable parameter for detecting a putative loop

in the trajectory. Those trajectories to which corresponds a small value of the end‐to‐end distance, are

likely to be entangled.

Output:

The routine provides a plot of the end‐to‐end distance as a function of the index of the trajectory/target.

PHASE D: VISUALIZE THE SINGLE TRAJECTORY

D_BETA_ADD_LABEL.M

D_add_label.m. This routine creates a display of the trajectories (the matrix fine) together with the

number of the segmented target superimposed on the image itself. The color codes (from dark to light)

the passage time on the specific pixel of the target whose index number is written on the image close to

the position of the first appearance of the target in the time stack (i.e. the frame from which the target

has been followed along the stack). It opens a new figure window entitled “Time projection of the dADI”.

The total number of the displayed target numbers can be limited, with respect to the total contatore

value, by setting a minimum value of the trajectory length to be displayed.

7

Input:

lenght_traj: this is the minimum value of the length of the trajectory for which the corresponding

target number is displayed on the figure.

T_F_size: the size of the target numbers marked on the image, default is 10. The user should resize

the image in order to read correctly the target numbers in highly dense images.

D_T_F_size: the increment of the size of the target numbers marked on the image. The default value

is 0. Additional to this feature, the user should resize the image in order to read correctly the target

numbers in highly dense images. The algorithm for the text sizing is:

colore=max(fine(1,1,:)); % colore = maximum occupancy time in the trajectory

T_F_size = T_F_size_0 + D_T_F_size*fine(1,1,i)/colore;

 %% fine(1,1,i) represents the i-th occupancy time.

Output:

the figure that reports the vel (or ADI) matrix superimposed on the first binarized image of the stack and

with the number of the corresponding target marked on the image itself. The color of the target is

chosen between red and blue (RGB) according to the image from which the tracking has started. The

algorithm for the color coding of the number of the target on the image is:

ColorRGB = [1-(fine(1,1,i)/colore); 0; (fine(1,1,i)/colore)]

Therefore the most red numbers on the images corresponds to targets that have been segmented on the

first image of the stack and the most blue ones corresponds to those segmented on the last image in the

stack from which a tracking has been performed. The ADI image is coded in green levels (passage time

from dark to light green).

The routine performs also a search for possible superposition of text on the image. In the case that two

indices corresponds to the same pixel position (this may occur for incrementostep<numero), the

routine displaces the largest occupancy time in the closest nearest neighbors and changes the color of

the displaced text to white.

Please notice that the text of the index is written by MATLAB in such a way that the most significant digit

lies on the assigned pixel. However, for highly dense images, the user should zoom the image in order to

see correctly placed the indices. See also Regarding_D_add_label.pdf and

AnimatedZoom_forTextPositioning.gif in the OAM, to this regard.

D_DRAW_TARGET_RMS.M

8

This routine provides the user with a visualization of the trajectory of the selected target. It is suggested

that the user run “D_add_label.m” before this step in order to identify the most interesting targets.

The input parameter to be set in the routine is the order number of the selected target (variable:

punto) and the output is a series of images and plots.

Input:

• punto: is the variable in which to store the number of the target of which one wants to display

the trajectory.

• High_T: is the value of the threshold to be used to display the images in Fig.3 (see output

below. This value enhance the details of the images and is used only for display purposes.

Output:

• Fig.1: this figure, whose title is “TRACE” displays the trajectory of the selected target (specified by

the variable punto) in jet colormap. The color codes for the increasing passage time along the

trajectory, normalized to the length of the trajectory for the specified target.

• Fig.2. this figure, whose title is “rms displacement” (
2)0()(xx −τ) displays the root mean

square displacement of the selected target.

• Fig.3. this figure displays the trajectory of the selected target superimposed on the first and the

last image. The trajectory is displayed with the occupancy time in increasing levels of blue color.

PHASE E: ANALYZE TRACKS FOR CROSSINGS

E_CHECK_CROSSINGS.M

This routine has been devised to detect the entanglement points in trajectories. The user must select a

target and the routine analyzes its trajectory looking for space‐time points (x,y,t) of other targets’

trajectories that lie “close” to the selected trajectory. This test is performed by selecting a (3D) volume

whose size, ∆x∆y∆t, is set by the user in the routine. The output is a table of targets whose trajectories

lies within the preset xyt volume with the trajectory of the target chosen to be analyzed.

Input.

Punto_iniziale: this variable contains the number of the target whose trajectory must be scanned

for possible interactions with other targets.

delta_t: this is the half of the time axis of the hypersphere. The default value is 3.

9

delta_x: this is the half of the x‐axis of the hypersphere. The default value is 2.

delta_y: this is the half of the y‐axis of the hypersphere. The default value is 2.

The routine searches for the instances that corresponds to trajectories that, at times t1 and t2 that lies

within 2×delta_t +1, passes for points (x1,y1) and (x2,y2) in the image that lie within a cube of size

(2×delta_x+1)×(2×delta_y+1). The number of couples of such points (not trajectories but

points along the trajectories) is stored in the variable controllo_contatore.

Output.

The output of the routine is the matrix controllo_tabella whose size is

controllo_contatore ×8. The format is the following.

• controllo_tabella(i,1) = index of the trajectory that runs close to the trajectory whose

index is stored in controllo_tabella(i,5). The passage times, t1, and the positions

(x1,y1) that have satisfied the space‐time distance condition with a second point characterized by

the coordinates (t2,x2,y2), are stored in controllo_tabella(i,2-4)= (t1,x1,y1) and

controllo_tabella(i,6-8)= (t2,x2,y2).

An example of the controllo_tabella is given hereafter.

Targ0 X0 Y0 T0 Targ1 X1 Y1 T1

290 113 226 117 594 113 226 117

290 114 226 122 594 114 226 122

290 117 229 122 594 117 229 122

290 117 229 122 604 117 229 122

290 117 229 122 612 117 229 122

290 117 229 122 615 117 229 122

290 113 226 117 921 113 226 117

290 114 226 122 921 114 226 122

290 117 229 122 921 117 229 122

290 113 226 117 923 113 226 117

290 114 226 122 923 114 226 122

290 117 229 122 923 117 229 122

290 114 226 122 940 115 226 122

10

Targ0 is the analyzed target: Targ0=Punto_iniziale. Targ1 is the index of the target that has

interactions with Punto_iniziale. (X0,Y0,T0) and (X1,Y1,T1)) are the space‐time points of the

trajectory that satisfies the interaction criterion:

TTTyYYxXX ∆<−∆<−∆<− 01 AND 01 AND 01

Therefore in the above example, the targets number 594, 604, 612, 615, 921, 923 and 940 may

have interactions with the target 290.

PHASE F: DISPLAY TRACKS WITH CROSSINGS

F_CROSS_ADD_LABEL.M

This routine displays the trajectories of those targets that present some interactions with the target

whose index is Punto_iniziale, as selected in phase E.

Input.

PuntoIniziale: this value is the index of the trajectory/target of which we would like to consider

possible superpositions with other targets’ trajectories. This input is set in the E_check_crossings.m.

Output.

A figure is opened reporting the ADI image on which the indices of the trajectories that may have some

superposition with the chosen target’s trajectory, as set by the content of the matrix controllo_tabella,

are displayed. If the value of PuntoIniziale does not correspond to a target with interactions with

other targets only the trajectory of the target PuntoIniziale will be shown on the image.

PHASE G: MOUNTING OF THE MOVIE IN ABSENCE OF CROSSINGS

G_CREATE_MOVIE.M

This routine creates a movie of the trajectory of the selected target and allows to perform simple movie

operations, such as zoom, back and forward, pause and frame‐by‐frame visualization of all the

trajectories that are linked to the selected target by the matrix controllo_tabella. This routine

must then be run after E_check_crossings.m (that creates the controllo_tabella table) and after

setting the proper colormap.

11

Each of the targets present in the table controllo_tabella, and therefore possibly related to the

target with index Punto_iniziale, is reported in the images of the stack as a moving circle with

colors that falls within the colormap cmap2. All the circles are reported on the images: they start

moving when the corresponding target moves on the image and disappear when the target has been lost

on the image. The image is displayed instead as a 8 bits color map according to the colormap cmap1.

The algorithm for the selection of the maps reads:

cmap = colormap(jet(128)); %% this for the image, default jet
cmap2 = colormap(hsv(128)); %% this for the circles that identify the targets
cmap1(1:128,:)=cmap;
cmap1(129:256,:)=cmap2;
cmap1(256,:)=[1 1 1]; %% this is for the saturated pixels: white.

Input:

High_T: this is the threshold value used to amplify the contrast on the image.

a: is the actual number of images to be mounted in the movie. The default is a=numero, i.e. all the

numero images are mounted.

Max_tab: is the maximum number of targets linked to the target analyzed (whose index is

Punto_iniziale) to be displayed on the movie. This number should be larger than the rows in the

table controllo_tabella. The default value is Max_tab=30, which more than sufficient to treat all the

linked targets. It can be lowered by the user if only some of the linked targets are to be followed on the

movie.

cmap and cmap2. These are the color maps for the image and for the circles that describe the position

of the targets. The default values are: jet(128) for the image and hsv(128) for the circles. This

parameter can be changed by acting on the input parameter lut_flag in the following way:

 lut_flag = 1; % lut_flag = 0 --> jet, lut_flag = 1 --> hot

Output:

The movie is mounted by copying the frames initially displayed on the screen on an avi file, whose name

is created as ’Gmovie.avi'.

The Movie is also opened on the screen by means of the Matlab encoded avi player, implay.

PHASE H: DISPLAY CONTIGUOUS TRAJECTORIES

H_TRACK_3D.M

12

This routine allows the user to superimpose the trajectories that refer to the targets that have been

found to have interactions with the analyzed target (whose index is Punto_iniziale). It displays a

3D plot in which the trajectory found for each of the targets listed in the table controllo_tabella,

are displayed on different z planes. The z coordinate corresponds to the order with which the target

appears in the controllo_tabella. The plot is opened first on the z projection: all the trajectories

are superimposed. The user can then use the “rotate 3D” button on the image window menu to visualize

different projections.

 The starting point of each trajectory is marked by a red sphere. The actual target number that

corresponds to a trajectory reported in this plot can be gained by the inspection of the

controllo_tabella. If we take as an example the controllo_tabella reported above (see

description of phase E), the trajectory reported at z=3 by the H_track_3D.m routine corresponds to the

target 612.

PHASE I: CONTINUITY OF THE FINAL TRAJECTORY (COMPILATION OF THE PARAGON TABLE).

I_CREATE_CROSS_MATRIX.M

This routine compiles the possible final trajectory (in the form of a table called paragone) composed of

all the trajectories of the targets that appear in the controllo_tabella. The table is sorted in order

of increasing passage times and the change in the x and the y position between subsequent rows of the

table is computed and reported in the table for user inspection and help. An example of a possible

output for the table paragon is given here.

Table I‐1.

frame x y target ∆x ∆y
1 193 204 246 ‐2 ‐15
2 191 189 547 1 14
2 192 203 246 ‐2 ‐12
4 190 191 546 3 12
4 193 203 246 ‐8 ‐6
5 185 197 244 1 ‐1
6 186 196 244 1 ‐1
7 187 195 544 5 9
7 192 204 246 ‐6 ‐7
9 186 197 244 0 5

12 186 202 862 1 ‐5
13 187 197 244 3 6
14 190 203 246 ‐3 ‐5
15 187 198 244 2 6
15 189 204 246 0 ‐1
17 189 203 246 0 ‐12

13

18 189 191 546 3 ‐2
19 192 189 547 ‐7 12
24 185 201 862 0 1
25 185 202 862 5 ‐11
25 190 191 546 ‐4 8
26 186 199 244 3 ‐7
26 189 192 546 ‐4 11
27 185 203 862 ‐1 ‐1
28 184 202 862 1 ‐2
29 185 200 244 0 0
29 185 200 862 5 4
31 190 204 246 ‐6 ‐4
33 184 200 244 0 0
33 184 200 862 3 ‐6
34 187 194 544 4 ‐4
36 191 190 547 ‐5 5
39 186 195 544 1 0
40 187 195 544 4 ‐6
40 191 189 547 ‐3 13
42 188 202 246 ‐1 ‐6
43 187 196 544 5 ‐6
43 192 190 547 ‐3 0
57 189 190 547 ‐5 9
60 184 199 244 0 0
60 184 199 862 5 ‐2
65 189 197 544 1 0
68 190 197 544 0 ‐1
71 190 196 544 2 1
72 192 197 544 ‐4 ‐4
73 188 193 546 0 0
73 188 193 547 6 3
73 194 196 544 1 ‐1
75 195 195 544 ‐1 0
76 194 195 544 1 1
79 195 196 544 ‐7 5
82 188 201 246 ‐1 1
83 187 202 246 9 ‐7
87 196 195 544 1 0
93 197 195 544 1 1

106 198 196 544 ‐9 ‐2
110 189 194 546 0 0
110 189 194 547 ‐4 5
116 185 199 244 0 0
116 185 199 546 0 0
116 185 199 547 0 0

14

116 185 199 862 11 ‐1
117 196 198 544 ‐9 5
119 187 203 244 0 0
119 187 203 246 0 0
119 187 203 546 0 0
119 187 203 547 0 0

From this table one can see that the table contains more than one trajectory. One possible choice of

continuous trajectories obtained by the original table given above is for example:

Table I‐2.

t X Y Targ Dx Dy t X Y Targ Dx Dy

34 187 194 544 ‐1 1 t X Y Targ Dx Dy 2 191 189 547 ‐1 2

39 186 195 544 1 0 5 185 197 244 1 ‐1 t X Y Targ Dx Dy 4 190 191 546 ‐1 0

40 187 195 544 0 1 6 186 196 244 1 ‐1 12 186 202 862 3 2 18 189 191 546 3 ‐2

43 187 196 544 2 1 7 187 195 544 ‐1 2 15 189 204 246 0 ‐1 19 192 189 547 ‐2 2

65 189 197 544 1 0 9 186 197 244 1 0 17 189 203 246 ‐1 ‐1 25 190 191 546 ‐1 1

68 190 197 544 0 ‐1 13 187 197 244 0 1 42 188 202 246 0 ‐1 26 189 192 546 2 ‐2

71 190 196 544 2 1 15 187 198 244 ‐2 3 82 188 201 246 ‐1 1 36 191 190 547 0 ‐1

72 192 197 544 2 ‐1 24 185 201 862 0 1 83 187 202 246 40 191 189 547 1 1

73 194 196 544 1 ‐1 25 185 202 862 1 ‐3 43 192 190 547 ‐3 0

75 195 195 544 ‐1 0 26 186 199 244 ‐1 4 57 189 190 547 ‐1 3

76 194 195 544 1 1 27 185 203 862 ‐1 ‐1 73 188 193 546

79 195 196 544 1 ‐1 28 184 202 862 1 ‐2

87 196 195 544 1 0 29 185 200 244 ‐1 0 t X Y Targ Dx Dy

93 197 195 544 1 1 33 184 200 244 0 ‐1 1 193 204 246 ‐1 ‐1

106 198 196 544 ‐2 2 60 184 199 862 2 192 203 246 1 0

117 196 198 544 4 193 203 246 ‐1 1

7 192 204 246 ‐2 ‐1

14 190 203 246 0 1

31 190 204 246

In order to build the most complete paragon table for one target followed along the stack and to be fed

to the phase K of the algorithm, the user should perform the phases E I for all the targets that on the

image appear to have possible interactions, and combine results similar to those shown in table I‐2

obtained for different values of Punto_iniziale.

PHASE K: CREATION OF THE MOVIE OF THE FINAL TRAJECTORY.

K_PREPARE_PARAGON.M, K_FINAL_MOVIE.M AND K_BETA_FINAL_MOVIE_TRAJ.M

15

These routines help the user in building up a final trajectory movie and to compute the x,y trajectory to

be used for further physical analysis. The K_final_movie.m and K_beta_final_movie_traj.m routines, that

differ only for the display mode of the trajectory on the movie, take as an input the table paragon,

created by the phase I of the algorithm and mount a movie with the trajectory superimposed on the

image stack.

K_final_movie.m reports the trajectory as a collection of circles that follow the target in its motion.

K_final_movie_traj.m reports the trajectory as a trace that is superimposed on all the frames of the final

movie.

The user must validate the table paragon before using these routines. The validation is performed by

looking at the continuity of the trajectory on the table as described in the phase I. In order to perform

this task the user can inspect visually the table paragon, as described in the phase I, or use the

K_prepare_paragon.m routine.

K_prepare_paragon.m

The routine looks for the continuity in the x component of adjacent rows of the table paragon according to

the parameter threshold_paragon.

The routine builds a matrix trj(max_trj_build, max_len_trj,6) in which at most max_trj_build

sub‐matrices extracted from the table paragon, according to the continuity test on the x coordinate of

the trajectory, are stored sub‐sequentially. The maximum length (number of elements) of the sub‐

trajectories is max_len_trj.

Since the visualization of a 3D matrix is not easy in the MATLAB editor, the routine provides, at each run,

one of the continuous submatrices in a separate 2D matrix, trj(max_len_trj, 6).

Input:

threshold_paragon: value of the threshold for the continuity between adjacent rows in the table

paragon. Default value is threshold_paragon = 2;
The algorithm with which the table paragon is split in continuous sub‐matrices (locally stored as temp in

the code excerpt reported below) is the following:

 indice1 = 1;
 indice2 = 1;
 i=1;
dim_par = size(paragone,1);
temp = paragone;

while ((i<dim_par) && (temp(indice1,1)~=0)) % paragone last line is 0
 temp1(i,:) = temp(indice1,:);
 j = min(indice1 + 1,dim_par);
 scarto = abs(temp(j,2)-temp1(i,2));

16

 while ((j<dim_par)&&(scarto > threshold_paragon))
 temp2(indice2,:) = temp(j,:);
 indice2=indice2+1;
 j= j+1;
 scarto = abs(temp(j,2)-temp1(i,2));
 end
 indice1 = j;
 i = i+1; % back again
 end

max_trj_build: is the maximum number of continuous sub‐matrices to be built. The default value is

max_trj_build = 8.

out_trj: is the index number of the sub‐trajectory to be stored in the output 2D matrix

 trj_cur(max_len_trj,6) for the user inspection. Default value is out_trj = 1. This

parameter should be changed by the user before running the routine in order to obtain a readable 2D

matrix to be used to run K_final_movie.m or K_final_movie_traj.m. One needs only to replace the matrix

paragone with one of the trj_cur output matrices obtained by this routine

(K_prepare_paragon.m).

max_len_trj. Is the maximum length of the sub‐trajectories to be built. Default value is

max_len_trj = 200;

 Output:

trj_cur. This is a 2D matrix that stores a subset of the table paragon that satisfies the continuity

constraint. This table represents the projection of the trj(max_trj_build,max_len_trj,6)

on one of the indices (chosen by setting the index out_trj before running the routine) of the first

dimension:

 trj_cur(: , :) = trj(out_trj, : , :)

The trj_cur matrix has the same dimension(paragone(max_len_trj,6)) as paragone

and can therefore be used as it is to replace paragone before running K_final_movie.m or

K_final_movie_traj.m. The whole sets of continuous sub‐trajectories is stored in

trj(max_trj_build, max_len_trj,6). In order to get all the subtrajctories in a format

suitable for further use in the K phase one should re‐run K_prepare_paragon.m with different values of

the out_trj parameter.

K_final_movie.m and K_beta_final_movie_traj.m

Input:

17

sogliaalta: is the value of a threshold to be used to enhance the contrast in the image. Default value is

10.

Trajectory coding.

K_final_movie.m: In this routine the image is coded in jet colormap and the position of the target is marked

by a moving white circle in the image.

K_beta_final_movie_traj.m:In this routine the image can be coded in jet or gray colormap (direct or

inverted) and the trajectory is marked as a fixed collection of pixels in which the occupancy time is

encoded (replacing the image colormap) in white, jet or gray colormaps. These different options can be

chosen by the user by setting the parameter display_bg. Default value is display_bg = 0;

The coding is performed as it follows:

%% if 0 gray inverted image with increasing green level coding of the traj
 %% if 1 jet image with white traj
 %% if 2 gray image with jet traj
 %% if 3 gray inverted image with gray normal lut for the traj

Output:

The movie is mounted by copying the frames initially displayed on the screen on an avi file, whose name

is created as TEST”Punto_iniziale”.avi'. For example if the target whose trajectory is being analyzed is

Punto_iniziale=655, the name of the file in the current working directory will be “TEST655.avi”.

The Movie is also opened on the screen by means of the Matlab encoded avi player, implay.

18

Important notes on the color coding and the numbering of the starting pixels of the trajectory

on the image displayed by the D_add_label.m routine.

Let us take first a reference image. This is taken from the stack of images reporting the motion of

the SLN nanoparticles within the cells, reported in Fig.2 and discussed in the text.

The image reported below corresponds to the bottom row of images in Fig.2. We first run the

D_add_label.m routine with typical parameters.

Parameters.

File:scan1_n120_s210.mat.

numero = 120,

threshold = 0.0210.

For C_coord_Vector.m:

lunghezza=6;
incrementostep=119;

For

D_beta_add__label_beta.m:

 length_traj=6;

T_F_size_0 = 10;
 D_T_F_size = 2

D_beta _add_label.m implements the possibility to choose the text font size. We could also give

different sizes of the numbers reported in the image since the size is chosen according to two

parameters

T_F_size_0 = 10; % initial font size
D_T_F_size = 0; % increment on the font size

and the following algorithm:

T_F_size = T_F_size_0 + D_T_F_size*fine(1,1,i)/colore;

19

where fine(1,1,i) is the occupancy time of the pixel and the variable colore reports the maximum

value of the occupancy time for the trajectory.

Color map of the trajectory.

Let us consider first the issues related to the choice of the colors of the trajectory pixels. This is a

green colormap as reported in the Figures. However we also encode the fact that a trajectory

starts from the very first frames of the stack, by coloring magenta that pixel.

Example 1 within the square (Dx,Dy)=(210:243,50:100) approx.

Take the magenta pixel numbered
“18”. This corresponds to the 18th
trajectory. It corresponds to the pixel
(215,65) with RGB values (output of
the D_add_label.m) (R,G,B) =
(0.975,0.0167,0.975). By debugging
the run we get that this pixel
corresponds to the starting point of a
trajectory very long (it is mapped on
116 out of 120 frames total) and
starts from the very first frame.

The algorithm for building up the colors in the trajectory is implemented in D_add_label.m as

follows:

for i=1:g-1,
 for k=1: 256
 for j=1: 256
 if abs(bw3(k,j,1)-bw3(k,j,i+1))>0.5,
 Htempo3(k,j,1)=Htempo3(k,j,1)+1;
 if Htempo3(k,j,2)==0, Htempo3(k,j,2)=Htempo3(k,j,2)+i;end;
 Htempo3(k,j,3)=Htempo3(k,j,3)+1;
 end
 end
 end
end;

The Htempo3(x,y,:) matrix contains the RGB components of the (x,y) pixel. This matrix contains,
at the end of the run, a picture of the motion. The piece of code reported above, instructs the
program to assign to the G component (i.e. Htempo(x,y,2)) of the (x,y) pixel the value of that
frame (“i” in the code) on which some motion has been detected for the first time on the specified
pixel. The R and B components (Htempo(x,y,1) and Htempo(x,y,3)) are continuously

20

incremented each time that the pixel has been interested by a motion. So, at the end, these two
values report the number of times we have detected a motion on the specified pixel.
Therefore those long trajectories that starts from the first frames corresponds to RGB triples in
which the G value is much less than the R and B ones, and result in a magenta color.

Example 2 within the square (Dx,Dy)=(210:243,50:100) approx.

Take the dark green pixel numbered
“337”. This corresponds to the 337th
trajectory. It corresponds to the pixel
(225,78) with RGB values (output of the
D_add_label.m) (R,G,B) =
(0.0417,0.392,0.0417). By debugging the
run we get that on this pixel a change
occurred for the first time on the 47th
frame and that only on 5 frames total a
change occurred on this pixel. Therefore
the Htempo3(225,78,2)= 47 and
Htempo3(225,78,1)=Htempo3(225,78,3)
=5. In such a case the R and B values are
small (0.0417) and the G value is
relatively large (0.392) but definitely
smaller than one.

Example 3 within the square (Dx,Dy)=(210:243,50:100) approx.

Take the pixel (219,78). This pixel
does not correspond to the
starting position of any
trajectory: its position does not
correspond to (x,y) = (fine(1,3,i),
fine(1,2,i)) for any value of
i=1..punto_tot (punto_tot is the
total number of trajectories).
The content of the image on this
pixel corresponds to RGB values
(output of the D_add_label.m)
(R,G,B) = (0.00833,0.95,0.00833).

By debugging the run we get that on this pixel a change occurred for the first time on the 114th
frame (out of 120 analyzed) and that only on 1 frame a change occurred on this pixel. Therefore

21

the Htempo3(225,78,2)= 114 and Htempo3(225,78,1)= Htempo3(225,78,3) = 1. In such a case the
R and B values are small (0.00833) and the G value is very large (0.95), so that the pixel is bright.

Positioning of the text on the image.

Regarding the position of the target number on the output image of D_add_label.m we note that
the number is always set in such a way that the most significant digit lies at the center of the pixel
and the other digits are then found on the right side of the pixel. As an example of this algorithm
we report the following image:

A specific parameter (T_F_size=12) in the D_add_label routine specifies for the font size. It may
help to lower the value of this parameter to avoid the partial superposition of targets’ number on
the image.

For example if we run D_add_label with

length_traj=2;
T_F_size_0 = 12;

We obtain the following (zoomed) image on which some of the targets’ number are
superimposed. This is due to the large font size and the high density of targets due to the low
constraints imposed by the algorithm (particularly low value of the threshold on the length of the
trajectory to be displayed, length_traj=2).

22

If on the contrary we run the D_add_label with a lower font size, We obtain for the same area of
the image the following result in which no superposition of targets’ indices can be found.
For example if we run D_add_label with

length_traj=2;
T_F_size_0 = 8;

In addition to the choice of the font size we have now added to the D_add_label.m routine a
feature that check for possible real superposition of the numbers on the image. This may occur for
entangled trajectories, since the same pixel may belong to more than one trajectory and may be
tracked from different initial frames (if incrementostep is chosen less than the total number of
frames). If a superposition occurs the routine displays by one unit in the nearest neighbors the text
reporting the target number and uses for this text the white color, in order to notify the user of
this instance.

It is very important to notice that Matlab does not scale the size of the text on an image when
the user zoom in or out the image itself. The location of the numbers with respect to starting pixel
of the trajectory depends then on the zoom of the image. However, by zooming in the image the
location of the numbers with respect to the starting pixels becomes more and more accurate, as
can be gained by the following sequence of images taken at increasing zoom level (see also the
animated gif image: AnimatedZoom_forTextPositioning.gif as OAM).

23

24

