1. Avoidance of heteroscedasticity by exclusion of very dilute samples

Application of standard curves relies on simple linear regression analyses. In such analyses the random error about the regression line must demonstrate equal variance (homoscedasticity). We hypothesised that use of very dilute samples in standard curves are critical to this prerequisite. The reason is that stochastic pipetting errors expectedly will be of far larger relative importance for very low concentrations.

We examined the practical importance of target concentration for Cq​-spread of replicates. The Cq-variance of the most dilute sample was by far the largest (Figure S1). The Cq-residuals for both targets and all days were grouped according to target concentration (N0). Group variances were examined for equality using Levene´s test with or without data of the most dilute concentration (sample number 8 of dilution series, N0=10-7). Inclusion of the data group obtained from the eighth sample of the dilution series introduced heteroscedasticity between data groups (p= 6*10-11) whereas exclusion entailed homoscedasticity amongst the remaining (p= 0.66). Based on this finding, we omitted data of the lowest concentration from the all other parts of this study.
Based on the above reasoning and our empirical data, we emphasise that inclusion of very dilute samples in standard curves generally must be avoided. Data quantity of an individual standard curve is not likely to justify application of tests of heteroscedasticity (e.g. Bartlett´s -, Levene´s -, or Brown-Forsythe tests). So in practical experiments, a more pragmatic approach might be preferred. Based on intuition and the above findings we suggest the following: Data are only to be included in the standard curve if a less concentrated sample (at least 10-fold) provided Cqs for all replicates. For practical purposes, this ensures that critically dilute samples are not included. The identification of qualified samples for RIMS can be conducted in a preliminary standard curve.
2. Error of drqPCR derived LOG (Ris)-estimates

As detailed in the text, Ris can be estimated by Eq. R.1 based on LOG (N0)-regression estimates the targets to be quantified. Obviously, error is associated with each LOG (N0)-regression estimate due to the errors of α- and β. Formulas for estimating such standard errors are available in statistical textbooks (Bland M [1] modified for this papers terminology):
Eq.S2.1:
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Where n is the number of samples in the standard curve (RIMS) and 
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 is estimated as: 
Eq. S2.2:
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The SE of Ris, associated with the regression estimates, can be estimated by combining the SEs of the two subtrahends:

Eq.S2.3:
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The SE estimated by Eq.S2.1 does not take the error of the particular Cq-estimation of the sample-to-be-quantified into account. In many applications of regression estimates, the error associated with the actual estimation of the predictor variable is of neglectable importance compared to the error associated with applying the regression equation. However in Real-Time PCR, even subtle variation in Cq-replicates can be important (since Cqs are exponents in exponential functions). In line with this, Cqs of samples-to-be-quantified are typically estimated in dupli- or triplicates out of the rationale that increasing Cq-replicate number reduces mean-Cq error and ultimately mean-LOG (N0) error. The SE of the mean LOG (N0)-estimate can be determined from the standard deviation (SD) of individual LOG (N0)-estimates and their number:
 Eq.S2.4:
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Individual LOG (N0)-estimates are estimated from their underlying Cqs calculated with Eq. M.2.

For LOG (Ris)s estimated from Eq. R.1 we propose to approximate combined SE taking both errors associated with regression (Eq.S2.1) and Cq-errors of the-sample-to-be-quantified (Eq.S2.4) into account:
Eq.S2.5:
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LOG (Ris) can also be estimated from Eq. R.3. As discussed in the text, the difference to estimation by Eq. R.1 is in that the intercepts (and thus the errors associated with them) have cancelled out. On the other hand, the samples that are to have estimated Cqs have doubled. We propose to approximate SE of LOG (Ris) in this setting by a strategy similar to the above. The combined SE is perceived comprised of errors associated with using regression estimates and the errors of Cq-estimations. Thus the SE can be determined from Eq.S2.5 with two modifications 1) two additional terms are in the radicand: 
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and 2) only the error of β (and not that associated with α) is included in SEregrs:

 Eq.S2.6:
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The error estimate of β can be estimated from:
Eg.S2.7:
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 is estimated from Eq. S2.2
3. Importance of raw data sampling approaches

Raw data for construction of standard curves (Cqs and target concentrations) and for samples to be quantified (Cqs) can be sampled by various approaches. Naturally, the accuracy and precision of the sampling approaches are ultimately reflected in the quantitative accuracy and precision.

Cq-sampling Cq is typically sampled as the interpolated (arbitrary) PCR cycle where a defined threshold of fluorescence intensity is acquired. The Cq-data sampling in this study (described in the Material and Methods-section of the main text) is such an approach (abbreviated FP). Other approaches are used. Commonly, users of the LightCycler favours the second-derivatives-maximum (SDM) approach. In the SDM approach, software automatically estimates the Cq from the kinetics of the individual analysis´ fluorescence over cycles. Practically, the point of maximal fluorescence-intensity acceleration is determined and the corresponding arbitrary cycle estimated. SDM is user friendly, but errors introduced by the additional algorithm might be anticipated. We initially evaluated the errors of our 28-sample standard curves to select the mode of Cq-sampling. Data based on SDM is presented in Table SI. SDM consistently provided larger errors than FP (cf main text Table I). 
We examined the importance of Cq-sampling approach quantitative accuracy and precision. Cqs were determined by SDM and this data used to recalculate the 2,500,848 RisNorm described in Results of main text: RIMS-based single ratio drqPCR. A comparison of the two Cq-sampling approaches quantitative precision is presented in Figure S2. For simplicity, only data obtained from RIMS based on two replicates of the RIMS-samples are presented (similar findings were made with 1, 3, and 4 RIMS sample replicates). Use of SDM was in our setting associated with significant (and important) loss of precision. Accuracy was unaffected. In a similar manor, we compared precision and accuracy of Ris,Norm for quantification based on external standard curves and the 2ΔΔCq-approach (Figure S3)). Similar findings were made.
We suggest that Cq-sampling by SDM is used cautiously. If precision is of great importance, use of SDM must be demonstrated to provide comparable or better precision and accuracy than manual threshold setting. Such evaluation could be done by comparing the errors of internal standard curves (e.g. RIMS) for the Cq-sampling approaches in question.

Sampling of N0s for standard curves The relative-target-concentration-data for standard curves are generally estimated from the volume-setting of the pipettes used for construction of the dilution series. However, these pipettes are typically calibrated based on weight of sampled volumes. The errors related solely to the pipette can therefore be avoided by applying weight data instead of expected volumes in the standard curves. Weight data of the pipetted volumes in the three, eight concentration serial dilutions of the present study is presented in Table S2. Pipetting errors propagate in the dilution series. To minimize importance of stochastic errors we chose a strategy of conducting each dilution step in triplicates. Use of volume data entailed that the estimated relative concentration was as much as 10 % off the best bid based on weight data (cf. Table S3).
However, weighing the sampled volumes is more labour intensive. To examine if it is worth while, we investigated the impact on precision and accuracy of Ris,Norm. The 2,500,848 quantifications were recalculated with use of N0,Rel-estimations of standard curves based on volumes or weights (Figure S4). Weight based standard curves offered only insignificant minute improvements of precision. Accuracy was comparable.   

We conclude that the practical benefits of using weight data is unlikely to be of importance.
Table S1
	Target
	Day
	
	σ2
	β
	α
	E
	NCq

	ERV1
	1
	
	.0098
	-.272
	2.64
	.869

[.846;.891]
	433

[332;565]

	
	2
	
	.0235
	-.274
	2.74
	.880

[.845;.916]
	552

[363;838]

	
	3
	
	.0068
	-.271
	2.72
	.865

[.847;.884]
	530

[423;663]

	
	
	
	
	
	
	
	

	TUPLE1
	1
	
	.0031
	-.289
	2.23
	.946

[.932;.960]
	169

[147;194]

	
	2
	
	.0032
	-.287
	2.25
	.936

[.922;.950]
	177

[154;204]

	
	3
	
	.0022
	-.283
	2.21
	.917

[.905;.928]
	161

[143;181]


Legend to Table S1 Data of the six 28-sample standard curves generated from Real-Time PCR data based on Cq-data sampling by SDM.
Table S2
	
	
	Weight for pipette volume set at:

	
	
	20 μl
	
	180 μl

	Day
	
	Mean [mg]
	n
	s.d. [mg]
	
	Mean [mg]
	n
	s.d. [mg]

	1
	
	20.3
	21
	0.11
	
	179.3
	21
	0.65

	2
	
	20.1
	21
	0.11
	
	179.4
	21
	0.31

	3
	
	20.0
	21
	0.08
	
	181.3
	21
	0.33


Legend to table S2 Weights of the pipetted volumes in the three dilution series utilised in this study. Each dilution step was conducted in triplicates. This was to minimize the importance of stochastic errors. Each dilution series was conducted in seven steps and therefore contained eight concentrations.
Table S3
	Step
	
	Fold-dilution of per step
	
	Accumulated fold-dilution

	
	
	Volume
	Weight (day)
	
	Volume
	Weight (day)

	
	
	
	1
	2
	3
	
	
	1
	2
	3

	1
	
	10
	9.80
	9.91
	10.1
	
	101
	0.98∙101
	0.99∙101
	1.01∙101

	2
	
	10
	9.88
	9.90
	10.1
	
	102
	0.97∙102
	0.98∙102
	1.02∙102

	3
	
	10
	9.84
	9.93
	10.1
	
	103
	0.95∙103
	0.97∙103
	1.03∙103

	4
	
	10
	9.82
	9.93
	10.1
	
	104
	0.94∙104
	0.97∙104
	1.03∙104

	5
	
	10
	9.91
	9.89
	10.0
	
	105
	0.93∙105
	0.96∙105
	1.03∙105

	6
	
	10
	9.84
	9.94
	10.0
	
	106
	0.91∙106
	0.95∙106
	1.04∙106

	7
	
	10
	9.87
	9.91
	10.1
	
	107
	0.90∙107
	0.94∙107
	1.05∙107


Legend for Table S3 Volume and weight data of the three dilutions series utilized in this study (left side). Accumulated fold-dilutions are calculated from the data (right side).
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