Supporting Information 1

Example of a symmetric matrix A with negative values and multiple largest eigenvalues so that the first principal component is not unique. Note that A is positive semidefinite and symmetric (as are covariance matrices). The columns in matrix E are the eigenvectors of A with eigenvalues $\lambda_{1}=1.2, \quad \lambda_{2}=1.2, \quad \lambda_{3}=$ 0.6.

$$
\mathrm{A}=\left(\begin{array}{rrr}
1.000 & 0.200 & 0.200 \\
0.200 & 1.000 & -0.200 \\
0.200 & -0.200 & 1.000
\end{array}\right), \quad \mathrm{E}=\left(\begin{array}{rrr}
0.816 & 0.000 & 0.577 \\
0.408 & -0.707 & -0.577 \\
0.408 & 0.707 & -0.577
\end{array}\right)
$$

