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SUPPLEMENTAL MATERIAL MISA: ASSOCIATION
BETWEEN 53 DNA DAMAGE RESPONSE AND REPAIR

GENES AND RISK OF INVASIVE SEROUS OVARIAN
CANCER

MISA is a methodology developed for candidate gene/pathway association
studies involving single nucleotide polymorphisms (SNPs) that addresses
two questions: “To what extent does the data support an overall associa-
tion between a set of SNPs within a pathway and outcome of interest?”
and “Which genes/SNPs are most likely driving the association?”. Using a
logistic regression framework. MISA improves on the more common single
SNP-at-a-time methods by modeling the outcome variable as a function of
a multivariate genetic profile, which provides measures of association at the
global (pathway), gene, and SNP levels that are adjusted for the remaining
genetic markers. In particular, we use logistic regression models to relate
disease status to a set of design or confounding variables (such as age, race,
previous diagnosis of cancer etc.), henceforth called design variables, and
subsets of SNPs, where we consider both the choice of SNPs as well as the
genetic parametrizations for each SNP that may be included in a model. An
individual model, denoted by Mγ , is specified by the S dimensional vector
γ, where S is the total number of SNPs under study and γs indicates the
inclusion and SNP-specific genetic parametrization of SNPs in model Mγ .
Thus for each individual, the logistic regression under model Mγ is given
by

logit(p(Di = 1|zi,xγ i,θγ ,Mγ)) = α0 + zT
i α + xT

i γβγ

where zi is the vector of design/confounding variables that are included in
all models, xi γ represents the coding of SNPs included in model Mγ and
θγ is the vector of model specific parameters (α0,α

T ,βγ
T ), with intercept

α0, vector of design variable coefficients α, and log–odds ratios βγ for the
included SNPs.

MISA uses Bayesian Model Averaging (BMA) (see Hoeting et al. [1999]
or Clyde and George [2004] for overviews) to combine information from
multiple models, Mγ , to address the degree to which the data support an
association at the level of individual SNPs, genes and pathways, while taking
into account uncertainty regarding the best genetic parametrizations. By
using model averaging, MISA improves upon methods that select a single
model and is effective in identifying subsets of likely associated variables,
for prioritizing them and for measuring overall association in the presence of
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model uncertainty. In BMA, posterior probabilities of the individual models,
Mγ can be calculated once prior probabilities of each model are specified,
p(Mγ). Then, Bayes Factors (BF) [Kass and Raftery 1995], which compare
the posterior odds of any two models (or hypotheses) to their prior odds, are
used to measure the change in evidence provided by the data for one model,
Mγ1, to another, Mγ2 or for pairs of hypothesis. In particular in MISA,
BFs are defined for quantifying associations at multiple levels (global, gene,
and SNP).

As mentioned above, to calculate the multi-level Bayes Factors of interest
one must specify the prior probability of each model Mγ . In MISA, these
priors are specified based on the prior inclusion probability of any given
SNP within a model. A priori the SNPs are taken to be exchangeable, that
is the prior distribution of the indicator variables γ does not depend on the
order of the SNPs. This assumption may be represented by a hierarchical
model where the inclusion of any SNP in the model is assumed to be and
independent and identically distributed from a Bernoulli distribution, with
inclusion probability θ for any SNP, and assigning a prior distribution to
θ. This leads to a prior distribution on the model size sγ that is Binomial,
Bin(S, θ). We place a Beta(a, b) hyper-prior on the quantity θ, which leads
to the BetaBinomial(a, b) distribution on the number of included SNPs. This
distribution provides over-dispersion, added robustness to prior misspeci-
fication, and an implicit multiplicity correction as a function of the total
number of SNPs under study compared to the Bin(S, θ) distribution. We
recommend a = 1 as a default, so that the prior distribution on model size
is non-increasing in sγ (a geometric distribution). The hyper–parameter b
can then be chosen to reflect the expected model size, global prior probabil-
ity of at least one association, or the marginal prior odds that any SNP is
associated.

The choices for hyperparameters have implications for the global Bayes
factor. The BetaBinomial(1, 1) has a global prior odds of association equal
to the number of SNPs, S, and would be appropriate for the case where in-
creasing the number of SNPs under consideration reflects increased prior
certainty that an overall (global) association should be detected. Under
the BetaBinomial(1, λS), the global prior odds are constant, 1/λ, reflect-
ing a prior odds for overall association that is independent of the number of
genes/SNPs tagged. The BetaBinomial(1, λS) provides an implicit multiple
testing penalty in the number of SNPs (rather than tests) that are included
in the study of interest by keeping the global (pathway) prior odds of an
association constant while decreasing the marginal prior odds of any one of
the SNPs being associated as the number of SNPs increases. As a skeptical
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“default” prior, we suggest the hyper–parameters a = 1 and b = S which
leads to the global prior odds of there being at least one association of 1 and
the marginal prior odds of any single SNP being associated of 1/S.

Given the number of SNPs under consideration, enumeration of all models
for S greater than 25–30 is intractable. While it is possible to enumerate
all single variable SNP models, the number of models with 2 or 3 SNPs
allowing for multiple genetic parametrizations is in the millions or more for
a typical modern hypothesis–oriented study. Stochastic variable selection
algorithms provide a more robust search procedure than stepwise methods,
but also permit calculation of posterior probabilities and Bayes factors based
on a sampling a set of the most likely candidate models from the posterior
distribution. MISA makes use of a stochastic search algorithm that is based
on Evolutionary Monte Carlo (EMC) [Liang and Wong 2000], which is a
mixture of parallel tempering and a genetic search algorithm. Efficiency
of stochastic algorithms often diminishes as the total number of models
increases. For this reason, we have found it useful to reduce the number of
SNPs included in the EMC search using a screen when S is large. Such a
screen will typically be fairly permissive, leaving only the weakest candidates
out of the stochastic search. The screen should be quick to calculate, adjust
for the same design variables and consider the same genetic parametrizations
as in the full analysis. In our analyses, we calculated marginal (i.e. SNP-at-
a-time) Bayes Factors for each of the log-additive, dominant and recessive
models of association against the model of no association. We ordered SNPs
according to the maximum of the three marginal Bayes factors and retained
those with a maximum marginal BF greater than or equal to one.

We used simulated case–control data to compare MISA and other pro-
cedures. The simulated data sets were structured so as to reflect the de-
tails — genes, tag SNPs, LD structure, and sample size — of the North
Carolina Ovarian Cancer Study (NCOCS) candidate pathway study com-
prised of 53 genes tagged by 508 tag SNPs. Using a simulation study, we
have evaluated MISA against established, simple to implement and more
commonly used methods, such as single (marginal) SNP-at-a-time methods
using FDR corrections, stepwise logistic regression, Lasso, and logic regres-
sion, and demonstrated that our methodology outperforms these methods in
detecting associations in modestly powered candidate pathway case–control
studies. The improvement in power is most noticeable for odds ratios of
modest (real world) magnitude and comes at the cost of only a minimal
increase in the false positive rate. Like stepwise logistic regression, lasso and
logic regression, MISA improves upon marginal, SNP–at–a–time methods
by considering multivariate adjusted associations. By using model averag-
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ing, MISA improves upon these multivariate methods that select a single
model, which may miss important SNPs because of LD structure. These
improvements have concrete implications for data analysis: MISA identified
SNPs in the NCOCS data that were subsequently externally validated; none
of the less complex methods considered here highlighted these SNPs to be of
interest. At the time of preparing this supplement, other top ranked SNPs
in genes identified by MISA are undergoing external validation. Finally, we
note that while MISA was developed for binary outcomes in case-control
studies, MISA is readily adaptable to accommodate other forms of outcome
variables (e.g. quantitative traits or survival) that are naturally modeled
within a GLM framework.

Web Resources. The URL for R software for the methodology pre-
sented in this supplement is:

http://stat.duke.edu/gbye/MISA.html

For more technical details regarding MISA, prior choices, simulation studies,
and illustrations, please refer to Wilson et al. [2009].

References.
Clyde, M. and George, E. I. (2004). Model uncertainty. Statist. Sci. 19 81–94.
Hoeting, J. A., Madigan, D., Raftery, A. E. and Volinsky, C. T. (1999). Bayesian

model averaging: a tutorial (with discussion). Statist. Sci. 14 382–401. Corrected
version at http://www.stat.washington.edu/www/research/online/hoeting1999.pdf.

Kass, R. E. and Raftery, A. E. (1995). Bayes factors. J. Amer. Statist. Assoc. 90
773–795.

Liang, F. and Wong, W. H. (2000). Evolutionary monte carol: Applications to cp model
sampling and change point problem. Statistica Sinica 10 317–342.

Wilson, M. A., Iversen, E. S., Clyde, M. A. and Schildkraut, S. C. S. J. M. (2009).
Bayesian model search and multilevel inference for snp association studies. Tech. rep.,
Available on ArXiv at http://arxiv.org/abs/0908.1144v1.


	Web Resources
	References

