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Appendix S1: Details on the 
method 
S1. The analog method 

The multi-proxy reconstruction of climate is a difficult problem as the proxy series have 
different lengths and some of them, especially the historical document-based series, have 
gaps. When the problem is limited to the heterogeneity in series length, one may use the 
nested regression, i.e. a regression is calibrated for each different subset of available 
predictors. This heavy procedure often leads to reconstructions with a variance decreasing 
with the number of really included predictors [1]. An alternative method, which is able to deal 
with missing data anywhere in the time-series, is the regularized expectation maximization 
(REGEM) algorithm [2]. It imputes missing values in a manner that makes optimal use of 
spatial and temporal information in the dataset. [3] have proposed another method, the 
modern analog method, which has proved his efficiency in other domains of paleoclimatology 
[4,5].  

S1.1. Description of the method 
It consists in infilling the missing data in the proxy matrix on the basis of the similarity 

between the annual vectors (and not on the basis of the correlation between variables, as most 
of the methods do). We define a distance index  between year i (for which we need an 
estimate) and year k (used to fill the gaps in year i). This distance measures how close these 
two vectors of data are: 

 (1) 
 
where xij represents the value of variable j in year i, xkj the value of variable j in year k, 

 is the amplitude (difference between maximum M and minimum m, both being 
determined on the interannual variability of each proxy) of variable j calculated using all data 
available. is an index equal to 1 if a value is available for variable j in year i as well k, and 0 
otherwise. The sum is computed for the mik components of the m-vector where data are 
available for both years k and i, i.e.  

 (2) 
Equation (1) has the squared mik at the denominator to make all the distances comparable, i.e. 
independent of the number of proxies available. We use the best analog available for year i, 
i.e. the vector satisfying the conditions of having the smallest distance and data available for 
variable j. This is a difference with the method used by [3] who used a mean of all the analogs 
with a distance <0.5, with the risk to smooth the reconstructed variance. The choice of 
distance metric has an influence on the results. In pollen analysis, the chord distance where 
the pollen frequencies are transformed into square roots is often preferred. It does not apply 
for our data. We have chosen the simplest distance, the Euclidian distance, because our trials 
have shown that it performs as well as other methods. 

S1.2. Validation of the analog method 
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The quality of fit by the analogs is evaluated with the correlation between observations and 
estimates on the common period. A good correlation proves that the hypothesis justifying the 
use of analogs is satisfied, i.e. that the notion of analog has a meaning. Nevertheless, these 
correlations can be overestimated because of time autocorrelation in the proxy series. If, 
systematically, the best analog is found just before or after the missing data, we have not 
guarantee that for years much distant, the estimates remain acceptable. We have now to test 
that a meaningful analog actually exists irrespective of the temporal location of the missing 
data. Ideally, this could be done by testing the climate reconstructions all along the time 
periods where they are obtained, but the shortness of the instrumental climate data prevents it. 
An alternative way is to use the proxy series themselves for the validation, assuming that the 
proxies are the climate that must be reconstructed. This hypothesis is not too strong as the 
proxies have been chosen because they are related to climate. If we are able to reconstruct the 
proxies of any year of the considered period from a limited time period considered as the 
calibration or the reference period – as it is done with the instrumental periods -, we may 
consider our method as robust. 

Fig. 1B shows the number of proxies available for each year. The maximum of data is 
found between A.D. 1500 and 1900. The reference period, for this test, is taken within that 
interval to maximise the number of proxies available. If we impose a minimum of 100 
proxies, the period reduces to A.D. 1575-1744, i.e. 170 observations, a number close to the 
length of the instrumental series. For a given proxy, each year, where data are available, is 
estimated by the best analog taken from the A.D. 1575-1744 reference period. The validation 
is done by using four statistics: 

- R, the correlation between observations and estimates on the reference period (1575-
1744, 170 observations); 

- Rp, the correlation between observations and estimates on the data outside reference 
period; the number of data available depends on the series; 

- RE, the Reduction of Error, is the proportion of variance explained by the analogs, 
calculated relative to the reference mean; 

- CE, the coefficient of efficiency, is also proportion of variance explained by the 
analogs, calculated relative to the mean of the data not belonging to the reference 
period. 

The RE statistic ranges from minus infinity to one. If this quantity is greater than zero, 
the reconstruction has greater skill than that obtained by simply using the mean of the 
reference data as analog [6]. The CE statistic is often used in the tree-ring literature [7]. It is 
useful when the instrumental data are not stationary.  

The test is applied to the 101 proxy series with a minimum of 50 observations in the 
reference period. To calculate confidence intervals for these statistics, a Monte-Carlo 
technique is used. A set of 101 random time-series taken from Gaussian white noises are 
generated and transformed into red noise with a first autocorrelation equal to that of each 
proxy series. The estimates are obtained by the analogs method. This is repeated 100 times 
(with different random series) and the four statistics, earlier mentioned, are calculated and 
summarized by the 50th, 75th, 90th, 95th and 99th percentiles. When a statistic passes one of 
these levels, it is considered as significant at the corresponding level. Table S2 shows (1) that, 
even if the correlations R are high, they are not necessarily better than those obtained on 
random series (31% only are significant at the 90% level) and that this parameter is not 
reliable because of the autocorrelation of the series; (2) that the large majority (around 60%) 
of Rp, RE and CE are significant at the 75% level and 50% at the 90% level, and then that the 
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analogs are meaningful to reconstruct past climates; (3) that a non negligible part of the 
proxies (40%) are not well estimated, which means that they do not contain a sufficiently 
large portion of climatic variance.  

The fact that some series are poorly reconstructed means either that they do not contain 
any climatic signal or that they the climatic signal recorded is more complex. It is impossible 
to choose between both alternatives. If the second one prevails, there is an important loss to 
eliminate these series. If the first one prevails, it is not certain that they will have a strong 
effect on the whole reconstructions. We decided to keep them. 

Analogue method performs well if two similar years are driven by similar climate 
forcing. This test proves that it is the case. The method has another interesting characteristic 
as compared with the regression-based methods: the correlations between estimated series are 
not better than those of the observed series as the estimation process is not based on the 
similarity between the variables but between the years. The method is then conservative for 
the observed spatial variability. It is demonstrated by [8]. 

Recently, it has been pointed out that the spatial autocorrelation had the consequence to 
over-estimate the fit when it is applied to spatial data [9]. This is true also for temporal 
analogs when proxy-series are red noise series. The problem has been avoided here by 
separating the target year and the analog by a minimum number of years (see below h-block 
Jack-knife technique). The analogs selected are necessarily far (at least by 5 years) from the 
reference set. 

S2. The reconstruction methods and results 
The proxy series are very heterogeneous as well in their length than their resolution. A 

three-step method has been designed to homogenise their length and to obtain a matrix 
covering the maximum period of A.D. 600-2007 before calibrating the climatic signal. The 
same method is used as well to homogenise the length of the temperature series on the A.D. 
1850-2007 period and to extrapolate the temperature series from the proxy series.  

S2.1. The pre-processing step 
First, missing data of the tree-ring series are infilled using the analog method. This initial 

1404x95 matrix has 57% of gaps induced by the length heterogeneity of the series. Previous 
section showed that the correlation R was a biased indicator of the quality of fit, as it is 
possible to have correlations up to 0.70 with red noise series. Nevertheless, the large majority 
(73%) of the correlations calculated between observations and estimates are larger than 0.70, 
which is a clue of the quality of the fit. This complete the conclusion based on Table S2, that 
the analog method is relevant for the proxy series. 

Fig. S1 shows a few examples of infilled series. The three series called Torne1, Torne2, 
Torne3 gives us a good opportunity to evaluate the quality of the analog method. Torne2 has 
no data before A.D. 1400. The extrapolation before that date is of good quality: it reproduces 
perfectly the low indices of the 10th century observed in Torne1 and Torne3, which is 
expected by their geographical position. Moreover, these three series have a common period 
between 1400 and 1947. The mean correlation of the three observed series is 0.66 and this 
correlation remains of the same magnitude for the estimates (0.53). We conclude that the 
spatial heterogeneity between the filled series does not vary according to the number of 
proxies available. It is an important property for the interpretation of the reconstructions. 

This step results in a complete matrix of 95 series and 1404 rows between A.D. 600 and 
2003. To avoid an over-representation of the tree-ring series according to the other proxies, 
this matrix is transformed into principal components. We selected the first 11 PC’s, which 
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explain together about 44% of the total variance. The first three PC’s are represented in Fig. 
S2. The first PC is negatively related to mountain species as Larix decidua and Pinus cembra, 
which indicates a clear negative relationship with temperature. The second PC is negatively 
correlated with Pinus sylvestris, a cool temperate species also indicating a temperature signal. 
The third PC is positively correlated with most of the conifer species and PC4 with the 
deciduous species (mainly oak). The other PC’s are more spatially heterogeneous and 
potentially indicate local variations of temperatures. 

The annual temperature derived from pollen data in Europe [10] are available on a grid of 
1236 points between 10°W and 50°E and between 35°N and 70°N, by step of 1° longitude 
and latitude (Fig. 1A). They have also been transformed into principal components. We retain 
the first five ones explaining 91% of their total variance (Fig. S3). This small number is 
explained by the large correlations between these gridded variables. PC1 (42% of the 
variance) indicates a strong warming during the 19-20th centuries. The second one (24% of 
the variance) indicates a strong cold period between A.D. 1400 and 1900, which could be 
related to the Little Ice Age (LIA). The other PC’s are more variable and cannot be identified 
easily with clearly known climatic events. We exclude the fourth one (7% of the variance), 
because it emphasizes a warm medieval period at the same level than the end of the 20th 
century, but also a warm 17-18th century which does not correspond to our knowledge of this 
period. We know that the unequal resolution of the various pollen cores used by (Davis et al. 
2003) may be responsible of artefacts. Retained components 1, 2, 3 and 5 explain together 
84% of the variance. 

The historical and ice-core series are bound to the 11 PC’s of the tree-ring series and the 
4 PC’s of the pollen derived annual temperature to form a matrix of 32 series. 

The HADCRUT3 temperature dataset contains 156 series spaced by 5° of longitude and 
latitude, with about the half of missing data. We kept the 125 series containing more than 50 
observations. They are represented by colored circles on the maps of Fig. S9. Missing data are 
infilled using the analogs method. The correlations between observations and estimates range 
between 0.34 and 0.80. These values are more meaningful than for the tree-ring series as the 
temperature series are not autocorrelated. Fig. S4A and S4B show the observed and estimated 
series for respectively the poorest estimated series (57.5°E, 27.5°N) and the best estimated 
one (42.5°E, 37.5°N). In the latter case, the low quality of fit is mainly due to the 
heteroscedasticity of the series. This shows that the infilled series are not all of good quality 
(18 have a squared-R lower than 0.15), but for a continental reconstruction, they are 
acceptable. The time series averaged over the whole continent (Fig S4C) has a trend close to 
the global curve found in the last IPCC report [11]. Before 1940, the anomalies are generally 
negative and, after 1980, they are positive or close to zero. 

The 125 time-series are transformed into principal components to reduce the number of 
variables. We keep 10 PC’s explaining about 68% of the total variance.  

S2.2. The calibration step using a h-block Jack-knife spectral analog method 
The reconstruction of the 10 PC’s of the temperature series will also be based on the 

analogs defined on the 32 proxy series. To manage the differences in resolution, the spectra of 
each proxy and temperature PC’s series are decomposed into three complementary bands (as 
already done by [12]) and the reconstruction is achieved separately for each frequency band. 
The proxies which are not reliable or have no significant variance in a given frequency band 
are not used for the reconstruction of the corresponding band. Fig. S5 shows which series are 
considered as reliable in each frequency band. For the low frequency band (frequency f < 0.05 
or period T > 20 years), we rely on ice data, historical written documents and pollen data (21 
series). For the intermediate component (0.05<f<0.3 or 3.3<T<20 years), we rely on a part of 
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ice data, tree-ring series and historical written documents (25 series). For the high frequency 
component (f>0.3 or T<3.3 years), we rely on tree-ring series and historical written 
documents (21 series). The temperature PC’s are assumed to contain all the frequency 
components. 
Complementary band pass filters 

The series are filtered with a band pass filter based on Fast Fourier Transform (FFT) 
algorithm available for the R-software environment (function “fft” of “base” library [13]). To 
filter out a frequency band, (1) the direct FFT transforms the series in the frequency domain, 
(2) all the frequencies within the band are set to zero, and (3) the resulting spectrum is back-
transformed into the time domain using the inverse FFT. The low-pass filter is based on the 
frequency limits [0, 0.05], the middle-pass filter, on the limits [0.05, 0.03] and the high-pass 
filter, on the limits [0.3, 0.5]. By adding the three resulting series, by construction, we find 
back the original series and the three filters are said complementary. An illustration of the 
effect of these filters is given in Fig. S8 for the April to September temperature averaged on 
Europe. 

This algorithm implemented to filter the data can work with missing values. Before 
filtering, the missing data are replaced by the mean of the series, which may attenuate the 
mean spectrum power, but not distort it. After inverse FFT application, the initial missing 
cases are restored.  

h-block-Jackknife reconstruction in each frequency band 
The main property of any time series is the time autocorrelation. An observation is not 

necessarily independent on its neighbor. With low-pass filtered time-series, this property is 
strongly exacerbated. The consequence is that the best analog of a given year will often be the 
previous or the following one in the time sequence, as already seen in section S1.2. When the 
results are verified on the instrumental period, this fact makes the fit over-estimated. To avoid 
that over-estimation, we defined, around each observation used for verification, a h-block 
where potential analogs are excluded. To facilitate the calculations, we defined the length h of 
the block identical for the three bands, even if it could be lower for the high frequency band 
than for the low frequency band. It has been defined on the basis of the squared 
autocorrelation function (Fig. S6) of the low frequency band of the temperatures, which 
represents the percentage of variance in common between observations separated by various 
time intervals Δt. This common variance is 98% for Δt=1 years. It falls at 51% for Δt=6 years 
and 27% for Δt=10 years. So, we set h equal to 5 years, meaning that it is forbidden to take, 
for a given year, an analog when it has more than 50% of the variance in common with it, 
knowing that this variance is just due to filtering. A lower h should make the verification 
statistics overestimated and a higher value should reduce too much the number of potential 
analogs. 

Table S3 show that all the principal components of the temperature series have a variance 
dominated by the middle frequency band. The first two PCs have also a large variance in the 
low frequency band, while the higher order PCs have a larger variance in the high frequency 
band. It means that the climate trend is contained in the first PCs and that it is particular 
important to reconstruct them as well as possible. 

The reconstruction method is also based on the analogs (section S1.1), but we use here a 
Jack-knife scheme to check independently the quality of fit and to calculate the error bars of 
the reconstruction. The Jack-knife scheme is based on N (here set to 100) replications of the 
reconstruction. For each replication, a year is randomly taken in the time-interval where 
instrumental data are available. This year is used for an independent verification. A safety 5-
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years block is defined around it and the analog method is applied to all the observations, 
excluding any analog from the safety block. The randomly taken observation is used for the 
independent verification statistics and the other ones are used for estimating the calibration 
statistics. It is specified in next section. 

This is done for each frequency band. It is illustrated for the first PC in Fig. S7. We use 
the same test observations for each of the three bands. Then it is possible to sum the three 
bands replication by replication and to have the same independent verification dataset. At that 
stage, we have N recombined temperature PC’s series which are themselves back-transformed 
into 125 temperature series. These have been compared together to provide a median 
reconstruction with a confidence interval and with the observations to provide calibration and 
verification statistics. As previously said, Fig. S8 shows the mean temperature of Europe, as 
observed and estimated in each frequency band. 
Error bars and verification statistics 

The Jack-knife method gives access to confidence intervals as well for the 
reconstructions than for the verification statistics. The reconstruction skill and its robustness 
are usually assessed by the Root Mean Squared Error of the calibration data (rmse), the Root 
Mean Squared Error of Prediction based on the verification data (rmsep), and the previously 
presented statistics (R, Rp, RE and CE). The RMSE statistic tests the quality of fit on the 
calibration data, i.e. they show if the hypotheses behind the existence of analogs are verified, 
while the RMSEP tests the prediction capacity of the reconstruction by using independent 
data. All the observations used for calibration are bounded in one big matrix where the 
number of raws is equal to 100*(n-1), i.e. the number of replications multipled by the number 
of reference years (minus the year used for verification). The observations used for validation 
are the 100 years removed by the Jack-knife procedure. R, rmse and R2 are then based on 
100*(n-1) years and Rp, rmsep, RE and CE on 100 years. 

Table S4 shows that the low frequency band is well reconstructed. The calibration 
statistics (R, R2) are amplified by the autocorrelations. But the verification statistics (using the 
5-year safety blocks) are also strongly significant (RE and CE are most often higher than 0.5). 
The first five PCs, which explain the maximum of variance are also the best estimated. For 
the two other frequency bands, because of less large autocorrelations, the calibration statistics 
are lower and the R2 are close to the RE, which indicates a better stability of the results.  

S2.3. Post-processing and final uncertainties 
The three frequency bands are recombined and the PC’s are back-transformed into 

temperature variables. The total R varies from 0.33 to 0.73 with a mean of 0.60 and that the 
total R2 varies between 0 and 0.48 with a mean of 0.28 (Table S5). Fig. S9 shows the spatial 
distribution of the whole spectrum R, R2 and RE statistics. The region from Tunisia to Egypt 
has a negative RE, which can be explained by the lack of proxy data. There is also low RE at 
southeast, northwest of the covered region and also in central Europe. 

The 95%-prediction intervals are based on the variability of the estimates between the 
100 replications. By averaging them on the whole time-period, we obtain 95% mean 
prediction interval for each grid-point (MPI95). These intervals include as well the 
uncertainties due to the model specification and due to the sampling. They are relatively large 
(Table S5), 0.7°C in average. Fig. S9 shows that they reach 1°C in the northern grid-points 
and falls below 0.6°C in the western part of Europe and in the Mediterranean region (except 
Spain). This spatial distribution of MPI95 cannot be interpreted as a map of quality of fit, 
because MPI95 is also dependent on the variance of the observed temperature at the grid-
point. The proper parameter is R2, for the quality of fit, and RE, for the quality of prediction. 
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They are also acceptable in average: R2 is 0.32 in mean and RE is 0.16. 

Fig. S10 shows the mean reconstruction for each quarter of the continent divided by the 
20°E meridian and the 45°N parallel and for the whole continent on the calibration period 
(1850-2007). Observed and reconstructed temperature fit as well for the high frequencies than 
for the trends. But, more important, the reconstructed variability is quite similar to the 
observed one: the standard deviation for observed mean European temperature is 0.37 °C and 
0.32 °C for reconstruction. The extremes are then well reconstructed. It is an intrinsic 
characteristic of the analog method: there is no variance loss in comparison with a regression-
based method. The maximum of temperature is +0.9 °C for the observed series and +0.8 °C 
for the reconstructed series. 

S2.4. Influence of proxies on the reconstructions 
To verify the influence of each proxy on the final reconstruction, we calculated the 

correlation coefficients between each proxy (or the PC of the proxy) and the 125 
reconstructed temperature series (one for each grid-point). Correlations are presented in Table 
S6 in decreasing order. Correlation spatial patterns of a few proxies are shown in Fig. S11. 
The best correlated proxy variables are the pollen PC5 (ppc5) and the Grip and Dye ice series. 
All these series are of low resolution, demonstrating the importance of the low frequencies in 
our reconstructions. Pollen PC5 (ppc5) shows an opposition between Mediterranean area and 
the rest of Europe. This strong pattern is frequently found in reconstructions (Fig. 10). The 
next low resolution variable is pollen PC2 (ppc2), which is positively correlated with south-
west Europe. Optimal correlations with high resolution series (4th and 6th rank) are the annual 
temperature index derived from written historical documents (Pichard_Tindex_an) and the 
Rhone grapes harvest series (VEND_LL_Rho). The first tree-ring PC is dcp4 (for 
dendrochronological series pc4) and was ranked 10th. Among the 11 tree-ring PCs, good 
correlations were only obtained for the 3rd , 4th, 6th and 7th PCs. These PCs were spatially 
homogeneous, except for the 4th, which shows an opposition between south-west Europe and 
the rest of the continent similar to ppc5 (Fig. 3). Most of the series were positively correlated 
to reconstructions, except for ppc5, the grape harvest dates series and dcp7. However 
VEND_LL_Rho is surprisingly positively correlated to temperature reconstructions.  

These correlation analyses between proxies and temperature reconstructions showed a 
strong dichotomy between southwest Europe and the rest of the continent, as emphasized by 
[14]. Correlations are also consistent with expected results from interpretations of the proxies, 
suggesting that the reconstructions are of high quality.
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Figure Captions 

Figure S1. A few tree-ring series. Observations are displayed by red dots and estimates by 
black lines (estimates done by using the best analog method applied exclusively on the 
tree-ring series). 

Figure S2. The first three principal components of the tree-ring series 
Figure S3. The first five principal components of the gridded annual temperature 

reconstructed from pollen data by [15].  
Figure S4. Mean April-September temperature in grid-points (27.5°N, 57.5°E) (A) (37.5°N, 

42.5°E) (B) and averaged on the whole continent (125 series on 10°E to 60°W and 25°N 
to 75°N) (C). 

Figure S5. Scheme of the spectral characteristics of the proxies and temperature series: double 
red arrows indicate the frequency range of each proxy type in number of cycles per year. 

Figure S6. Proportion of variance in common between years separated by various lags from 0 
to 30 (squared autocorrelation function). 0-lag represents the standardized variance, i.e. 1. 
The horizontal line represents the 50% variance. 

Figure S7. Estimates versus observations for the first PC of the HADCRUT3 April to 
September temperature series in the three frequency bands. Blue dots are data used for 
calibration and red dots data used for the h-block Jack-knife (leave 1-block out) 
verification. (a) in the low frequency domain, (b) in the middle frequency domain, (c) in 
the high frequency domain, (d) recombined estimated series (black) and observations 
(red) in function of time; the green line is the tendency.  

Figure S8. April to September temperature anomalies averaged on Europe : observation (red) 
versus estimates (black); (a) in the low frequency domain, (b) in the middle frequency 
domain, (c) in the high frequency domain.  

Figure S9. Spatial distribution of R, R2, RE and MPI95 (see text) 
Figure S10. Comparison, on the reference period 1850-2007, of the reconstructed and 

observed April to September temperature anomalies in four quarters of Europe and for the 
whole continent (the quarters are divided by the 45°N parallel and the 20°E meridian). In 
orange, the observations; in black the reconstruction with its shaded 95%-confidence 
interval; in blue the trend of the reconstruction and in red the trend of the observations.  

Figure S11. Distribution of the correlations between each proxy and the reconstructed 
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temperature series. The proxies were sorted by decreasing order of maximum correlation 
(in absolute value) and only the proxies with significant correlations are presented. Two 
scales of correlations are used: for the first seven maps scale from -0.5 to 0.5 and for the 
others series, scale from -0.3 to 0.3 applies. 

 
 

Table Captions 

Table S1. Details and references of the proxies used 
Table S2. Verification statistics for the estimation of 101 proxy data using the best analogues 

taken from the 1575-1744 reference period (the initial number of tree-ring series was 95, 
that of the historical series was 11, and that of the ice series was 8; 13 series were 
removed because insufficient number of data within the reference period) R is the 
correlation between estimates and observations on the reference period, Rp is the 
verification correlation on the data outside the reference period, RE is the reduction of 
error and CE the coefficient of efficiency (see text). A cross (+) indicates a confidence 
level of 75%, a star (*) 90%, two stars (**) 95% and three stars (***) 99%. These 
confidence levels are determined by Monte-Carlo simulation based 100 red noise series 
generated for each proxy series. Each random series follows an autoregressive order 1 
process where the error term follows a Gaussian law and the order 1 autoregression term 
is that of the corresponding proxy series. 

Table S3 - Variance of the 10 temperature principal components : "Total" line concerns the 
complete spectra and the three other ones the low-pass, middle-pass and high-pass bands. 
The three bands are delimited by the cut-off frequencies of 0.05 and 0.3 cycles/year. 

Table S4 - Calibration and verification statistics for each frequency band of the 10 
temperature PCs. R is the correlation between observations and estimates on reference 
data, Rp the corresponding correlation on independent data. R2 is the squared R. RMSEP 
is the root square of the mean error calculated on the independent data (h-block Jack-
knife method, see text). RE is the reduction of error and CE the coefficient of efficiency, 
both calculated on the independent data. 

Table S5 - Calibration and verification statistics for temperature series in each grid-point. R is 
the correlation between observations and estimates on reference data, R2 is the squared R. 
RE is the reduction of error calculated on the independent data. MPI95 is the 95% mean 
prediction interval, representing the one-side error bar for the reconstructions at the 95% 
level. 

Table S6 - Correlations between each proxy and the 125 reconstructed temperature series (one 
for each grid-point): we have represented the minimum, mean and maximum of the 125 
correlations and sorted them according to the maximum value. 


