EM Algorithm

In what follows, we give the procedure for estimating parameters in © within the EM algorithm framework
In the E-step, the posterior expectation of z;; is evaluated as
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In the M-step, closed form solutions exist for w and the parameters in ©,,. except for 7 and 0. Since
wy=1- Z;-];ll wj, it is easy to show that for j =1,...,J —1,
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By setting the above equation to zero and solving it for w;, we have
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Calculating the sum of both sides of Equation (2) over j =1
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Since Z _1 P;; =1— P, solving (3) for wy, it can be shown that

n
d)J = Z Pu/n (4)
i=1
Plugging (4) back into (2), we have ©; = > | P;;/n.
Suppose the gene expression trajectory is approximated by the first K orders of the Fourier series
then ©,, = (¢, 75), where ¢; = (awy, a1y, Bij, - - -, @Ky, Brj). We have
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The parameter ¢; can be updated by setting (5) to zero. Since
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we have
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Since the analytical form of the inverse of 3; is not available, we use the recursive method proposed by
Haddad (2004) to calculate the inverse matrix of ARMA(p, q) through its association with ARMA (p,

q-1).
We can write ¥; = 02R;, where R; is the correlation matrix that is entirely determined by the ARMA
parameters ¢1,...,@p,01,...,0,. The variance 0% can be updated by
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Again R; ! can be calculated by the method of Haddad (2004).

Because there are no closed form solutions for 7; and ARMA parameters ¢1,...,¢, and 01,...,0,
their estimates are updated using one-step Newton-Raphson method within each iteration. In particular,
in the (v + 1)-th iteration, 7; can be updated by
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with d;; being a m; x 1 vector whose components
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Similarly, the parameters ¢1,...,¢, and 601,...,60, can be updated by the one-step Newton-Raphson
method outlined above. However, there are no analytical forms of the first and the second derivatives
of the expected complete data log-likelihood with respect to the ¢’s and 6’s, we use the numerical
differentiation method to calculate these quantities (Zeng and Cai, 2005). To ease the presentation of
the method, denote the (p + ¢) dimensional vector ¥ = (¢1,...,¢p,01,...,60,). The first and the second
derivatives with respect to the x-th component in v are approximated, respectively, by
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where we use E to represent the posterior expectation of the complete data log-likelihood with respect
to w;;, ©_y denotes the parameters in © other than 1, the (p + q) vector e has unity length with the
k-th component set to 1, and h,, is the bandwith chosen by the investigator. When h,, is small enough,
the numerical differentiation approximates the true derivatives adequately. On the other hand, if h,, is
too small, the random errors from the numerical computation may deteriorate the results.



