EM Algorithm

In what follows, we give the procedure for estimating parameters in Θ within the EM algorithm framework. In the E-step, the posterior expectation of $z_{i j}$ is evaluated as

$$
\begin{equation*}
P_{i j}=E\left[z_{i j} \mid \Theta, \boldsymbol{y}_{i}\right]=\operatorname{Pr}\left[z_{i j}=1 \mid \Theta, \boldsymbol{y}_{i}\right]=\frac{\omega_{j} f_{i j}\left(\boldsymbol{y}_{i} ; \boldsymbol{\mu}_{i j}, \Sigma_{i}\right)}{\sum_{j^{\prime}=1}^{J} \omega_{j^{\prime}} f_{i j^{\prime}}\left(\boldsymbol{y}_{i} ; \boldsymbol{\mu}_{i j^{\prime}}, \Sigma_{i}\right)} . \tag{1}
\end{equation*}
$$

In the M-step, closed form solutions exist for $\boldsymbol{\omega}$ and the parameters in $\Theta_{\mu_{j}}$ except for τ and σ^{2}. Since $\omega_{J}=1-\sum_{j=1}^{J-1} \omega_{j}$, it is easy to show that for $j=1, \ldots, J-1$,

$$
\frac{\partial \log L_{c}(\Theta \mid \boldsymbol{y})}{\partial \omega_{j}}=\sum_{i=1}^{n} \frac{P_{i j}}{\omega_{j}}-\sum_{i=1}^{n} \frac{P_{i J}}{1-\sum_{j^{\prime}=1}^{J-1} \omega_{j^{\prime}}}
$$

By setting the above equation to zero and solving it for ω_{j}, we have

$$
\begin{equation*}
\omega_{j}=\frac{\sum_{i=1}^{n} P_{i j}\left(1-\sum_{j^{\prime}=1}^{J-1} \omega_{j^{\prime}}\right)}{\sum_{i=1}^{n} P_{i J}} \tag{2}
\end{equation*}
$$

Calculating the sum of both sides of Equation (2) over $j=1, \ldots, J-1$, we get

$$
\begin{equation*}
1-\omega_{J}=\frac{\sum_{i=1}^{n} \sum_{j=1}^{J-1} P_{i j} \omega_{J}}{\sum_{i=1}^{n} P_{i J}} \tag{3}
\end{equation*}
$$

Since $\sum_{j=1}^{J-1} P_{i j}=1-P_{i J}$, solving (3) for ω_{J}, it can be shown that

$$
\begin{equation*}
\hat{\omega}_{J}=\sum_{i=1}^{n} P_{i J} / n \tag{4}
\end{equation*}
$$

Plugging (4) back into (2), we have $\hat{\omega}_{j}=\sum_{i=1}^{n} P_{i j} / n$.
Suppose the gene expression trajectory is approximated by the first K orders of the Fourier series, then $\Theta_{\mu_{j}}=\left(\boldsymbol{c}_{j}, \tau_{j}\right)$, where $\boldsymbol{c}_{j}=\left(\alpha_{0 j}, \alpha_{1 j}, \beta_{1 j}, \ldots, \alpha_{K j}, \beta_{K j}\right)$. We have

$$
\begin{equation*}
\frac{\partial \log L_{c}(\Theta \mid \boldsymbol{y})}{\partial \boldsymbol{c}_{j}}=\left[\frac{\partial \log L_{c}(\Theta \mid \boldsymbol{y})}{\partial \boldsymbol{\mu}_{i j}}\right]\left[\frac{\partial \boldsymbol{\mu}_{i j}}{\partial \boldsymbol{c}_{j}}\right] \tag{5}
\end{equation*}
$$

The parameter \boldsymbol{c}_{j} can be updated by setting (5) to zero. Since

$$
\frac{\partial \log L_{c}(\Theta \mid \boldsymbol{y})}{\partial \boldsymbol{\mu}_{i j}}=\sum_{i=1}^{n} P_{i j}\left(\boldsymbol{y}_{i}-\boldsymbol{\mu}_{i j}\right)^{T} \Sigma_{i}^{-1}
$$

and $\frac{\partial \mu_{i j}}{\partial \boldsymbol{c}_{j}}=D_{i}\left(\tau_{j}\right)$, where

$$
D_{i}\left(\tau_{j}\right)=\left(\begin{array}{llllll}
1 & \cos \left(\frac{2 \pi t_{i 1}}{\tau_{j}}\right) & \sin \left(\frac{2 \pi t_{i 1}}{\tau_{j}}\right) & \cdots & \cos \left(\frac{2 \pi K t_{i 1}}{\tau_{j}}\right) & \sin \left(\frac{2 \pi K t_{i 1}}{\tau_{j}}\right) \\
1 & \cos \left(\frac{2 \pi t_{i 2}}{\tau_{j}}\right) & \sin \left(\frac{2 \pi t_{i 2}}{\tau_{j}}\right) & \cdots & \cos \left(\frac{2 \pi K K i 2}{\tau_{j}}\right) & \sin \left(\frac{2 \pi K t_{i 2}}{\tau_{j}}\right) \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
1 & \cos \left(\frac{2 \pi t_{i m_{i}}}{\tau_{j}}\right) & \sin \left(\frac{2 \pi t_{i m_{i}}}{\tau_{j}}\right) & \cdots & \cos \left(\frac{2 \pi K t_{i m_{i}}}{\tau_{j}}\right) & \sin \left(\frac{2 \pi K t_{i m_{i}}}{\tau_{j}}\right)
\end{array}\right)
$$

we have

$$
\hat{\boldsymbol{c}}_{j}=\left[\sum_{i=1}^{n} P_{i j} D_{i}\left(\tau_{j}\right)^{T} \Sigma_{i}^{-1} D_{i}\left(\tau_{j}\right)\right]^{-1}\left[\sum_{i=1}^{n} P_{i j} \boldsymbol{y}_{i}^{T} \Sigma_{i}^{-1} D_{i}\left(\tau_{j}\right)\right]
$$

Since the analytical form of the inverse of Σ_{i} is not available, we use the recursive method proposed by Haddad (2004) to calculate the inverse matrix of $\operatorname{ARMA}(p, q)$ through its association with ARMA (p, $\mathrm{q}-1$).

We can write $\Sigma_{i}=\sigma^{2} R_{i}$, where R_{i} is the correlation matrix that is entirely determined by the ARMA parameters $\varphi_{1}, \ldots, \varphi_{p}, \theta_{1}, \ldots, \theta_{q}$. The variance σ^{2} can be updated by

$$
\begin{equation*}
\hat{\sigma}^{2}=\frac{\sum_{i=1}^{n} \sum_{j=1}^{J} P_{i j}\left(\boldsymbol{y}_{i}-\mu_{i j}\right)^{T} R_{i}^{-1}\left(\boldsymbol{y}_{i}-\mu_{i j}\right)}{\sum_{i=1}^{n} m_{i}} \tag{6}
\end{equation*}
$$

Again R_{i}^{-1} can be calculated by the method of Haddad (2004).
Because there are no closed form solutions for τ_{j} and ARMA parameters $\varphi_{1}, \ldots, \varphi_{p}$ and $\theta_{1}, \ldots, \theta_{q}$, their estimates are updated using one-step Newton-Raphson method within each iteration. In particular, in the $(\nu+1)$-th iteration, τ_{j} can be updated by

$$
\begin{equation*}
\tau_{j}^{\nu+1}=\tau_{j}^{\nu}-\frac{\left.\frac{\partial}{\partial \tau_{j}} \log L_{c}(\Theta \mid \boldsymbol{y})\right|_{\Theta=\Theta^{\nu}}}{\left.\frac{\partial^{2}}{\partial \tau_{j}^{2}} \log L_{c}(\Theta \mid \boldsymbol{y})\right|_{\Theta=\Theta^{\nu}}} \tag{7}
\end{equation*}
$$

where

$$
\frac{\partial}{\partial \tau_{j}} \log L_{c}(\Theta \mid \boldsymbol{y})=\sum_{i=1}^{n} P_{i j}\left(\boldsymbol{y}_{i}-\mu_{i j}\right)^{T} \Sigma_{i}^{-1} \delta_{i j}
$$

with $\delta_{i j}$ being a $m_{i} \times 1$ vector whose components

$$
\delta_{i j l}=\sum_{k=1}^{K}\left[\alpha_{k j} \sin \left(\frac{2 \pi k t_{l}}{\tau_{j}}\right) \frac{2 \pi k t_{l}}{\tau_{j}^{2}}-\beta_{k j} \cos \left(\frac{2 \pi k t_{l}}{\tau_{j}}\right) \frac{2 \pi k t_{l}}{\tau_{j}^{2}}\right]
$$

and

$$
\frac{\partial^{2}}{\partial \tau_{j}^{2}} \log L_{c}(\Theta \mid \boldsymbol{y})=\sum_{i=1}^{n}\left[-P_{i j} \delta_{i j}^{T} \Sigma_{i}^{-1} \delta_{i j}+P_{i j}\left(\boldsymbol{y}_{i}-\boldsymbol{\mu}_{i j}\right)^{T} \Sigma_{i}^{-1} \frac{\partial^{2}}{\partial \tau_{j}^{2}} \boldsymbol{\mu}_{i j}\right]
$$

Similarly, the parameters $\varphi_{1}, \ldots, \varphi_{p}$ and $\theta_{1}, \ldots, \theta_{q}$ can be updated by the one-step Newton-Raphson method outlined above. However, there are no analytical forms of the first and the second derivatives of the expected complete data log-likelihood with respect to the φ 's and θ 's, we use the numerical differentiation method to calculate these quantities (Zeng and Cai, 2005). To ease the presentation of the method, denote the $(p+q)$ dimensional vector $\psi=\left(\varphi_{1}, \ldots, \varphi_{p}, \theta_{1}, \ldots, \theta_{q}\right)$. The first and the second derivatives with respect to the κ-th component in ψ are approximated, respectively, by

$$
\begin{equation*}
\frac{E\left[\log L_{c}\left(\Theta_{-\psi}, \psi+h_{n} e_{\kappa} \mid \boldsymbol{y}\right)\right]-E\left[\log L_{c}(\Theta \mid \boldsymbol{y})\right]}{h_{n}} \tag{8}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{E\left[\log L_{c}\left(\Theta_{-\psi}, \psi+h_{n} e_{\kappa} \mid \mathbf{y}\right)\right]-2 E\left[\log L_{c}(\Theta \mid \mathbf{y})\right]+E\left[\log L_{c}\left(\Theta_{-\psi}, \psi-h_{n} e_{\kappa} \mid \boldsymbol{y}\right)\right]}{h_{n}^{2}} \tag{9}
\end{equation*}
$$

where we use E to represent the posterior expectation of the complete data log-likelihood with respect to $w_{i j}, \Theta_{-\psi}$ denotes the parameters in Θ other than ψ, the $(p+q)$ vector e has unity length with the κ-th component set to 1 , and h_{n} is the bandwith chosen by the investigator. When h_{n} is small enough, the numerical differentiation approximates the true derivatives adequately. On the other hand, if h_{n} is too small, the random errors from the numerical computation may deteriorate the results.

