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1 Supplementary Methods

1.1 Derivation of Residual Degree Distribution

The full derivation for the degree distribution of the residual network model
proceeds as follows:

As the extended residual network is de�ned by the uninfected nodes of the
previous epidemic, a proportion α of the infected nodes of the previous epidemic,
and all the edges joining them, we de�ne the degree distribution for the extended
residual network as:

pres (kr) =
puninfected

res (kr) + αpinfected
res (kr)∑

ko

pkoηko + α
∑
ko

pko (1− ηko)
. (1)

We �nd that the puninfected
res (kr) can be found by

puninfected
res (kr) =

∑
ko≥kr

pkoηkopres (kr|ko) (2)

where pres (kr|ko) is the probability that a node in the extended residual network
will have degree kr given that it had a degree of k in the original network. This
condition distribution can Dbe calculated as

d

pres(kr|ko) =
(
ko

kr

)
(u1 + (1− u1)α)kr [(1− u1)(1− α)]ko−kr (3)

as discussed in the main text. Following Bayes rule, puninfected
res (kr) is then the

sum of the product of the probabilities that a node in the extended residual
network has degree kr given that it had original degree ko , (pres(kr|ko)), the
probability that the node of original degree ko was uninfected in the �rst
epidemic, (ηko), and the probability that the node had original degree ko ,
(pko) . In a similar way, pinfected

res (kr) can be calculated as:
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pinfected
res (kr) =

∑
ko≥kr

pko (1− ηko) pres (kr|ko) (4)

Thus, by substituting equations 2 and 4 into equation 1, we have:

pres (kr) =

∑
ko≥kr

pkoηkopres (kr|ko) + α
∑

ko≥kr

pko (1− ηko) pres (kr|ko)∑
ko

pkoηko + α
∑
ko

pko (1− ηko)
(5)

And lastly, by substituting equations 3 into equation 5, we have:

pres (kr) =∑
ko≥kr

pko
ηko

(
ko

kr

)
(u1+(1−u1)α)kr [(1−u1)(1−α)]ko−kr+α

∑
ko≥kr

pko(1−ηko)
(
ko
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)
(u1+(1−u1)α)kr [(1−u1)(1−α)]ko−kr∑

k

pkηk+
∑

αpk(1−ηk)
.

2 Supplementary Analysis

2.1 Incidence Data from In�uenza Pandemics

Here, we list the con�dence intervals for the odds ratio of attack rates in school-
age children to adults. We note that the de�nitions of the school-age children
and adult age groups vary across the studies and sometimes slightly di�er from
our own.
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Year Strain Odds Ratio of

School-Age Children to

Adults [CI]

Location Source Data Details

1918 A (H1N1) 1.71 [0.89, 3.29] 10 U.S.

cities

Frost et al, 1929 Data collected by the Publich Health

Service; in�uenza case counts per 100

individuals in canvassed group (which

included at least 5% of each city's

population) by age

1918 A (H1N1) 1.71 [0.89, 3.29] Baltimore Collins et al, 1957 cases counts per 100 individuals in

canvassed group by age; illnesses counted

included in�uenza, grippe, pneumonia and

colds in bed

1918 A (H1N1) 1.91 [1.02, 3.57] U.S. cities Collins et al, 1931 cases counts per 100 individuals in

canvassed group by age; illnesses counted

included in�uenza, grippe, pneumonia and

colds in bed

1957 A (H2N2) 2.35 [1.31, 4.22] Louisiana Gilbert et al, 1962 study reports summarized age-speci�c

in�uenza attack rates by age from 5 high

school family survey study

1957 A (H2N2) 2.57 [1.38, 4.76] U.K. Gani et al , 2005 age-speci�c attack rate by age

1957 A (H2N2) 2.45 [1.35, 4.47] Missouri Davis et al, 1970 study reports age-speci�c attack rates of

ILI in families of students who attended a

high school in Kansas City, MO

1968 A (H3N2) 1.0 [0.57, 1.76] Missouri Davis et al, 1970 study reports age-speci�c attack rates of

ILI in families of students who attended a

high school in Kansas City, MO

2009 A (H1N1) 1.75 Mexico Secretaria de Salud reported case counts; we normalized case

counts by age group size in Mexico

2009 A (H1N1) 5.06 USA CDC reported case counts as of May 19, 2009;

we normalized the case counts by age

group size in the US

2009 A (H1N1) 15.63 Japan Nishiura et al, 2009 reported con�rmed case counts as of June

1, 2009; we normalized case counts by age

group size in Japan.

1919 A (H1N1) 0.68 [0.25, 1.86] Baltimore Collins et al, 1957 cases counts per 100 individuals in

canvassed group by age; illnesses counted

included in�uenza, grippe, pneumonia and

colds in bed

1959 A (H2N2) 0.9 [0.5, 1.64] Louisiana Gilbert et al, 1962 study reports summarized age-speci�c

in�uenza attack rates by age from 5 high

school family survey study

1959 A (H2N1) 0.71 [0.39, 1.31] Ohio CDC Report, 1962 based on questionnaire survey of OH Dept.

of Health personnel and their families in

Jan 1960; reported percent ill �which

includes those personals with a serious

cold�

1969 A (H3N2) 0.14 [0.02, 0.89] unknown Taylor, 1971 reported rate per 100 at risk by age for

in�uenza or ILI; based on interview by

general practioner; we note that children in

this study were 5-14 year olds, and adults

were 15-64

Tab. 1: Details on attack rate data used for Figure 3
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2.2 Data on Immunity to In�uenza

Here we review empirical data from literature on e�ects of immunity due to
previous in�uenza infection.

Sample Size Subtype/Strain Year of study Reinfection Rate Timescale Source

A H1N1 1920 8% 1 year Jordan, 1927
94 A H3N2 1972 9% 1 year Noble et al, 1974
43 A H3N2 1973 16% 1 year Foy et al, 1976

100,000 various 1984-2002 7.4% 1 year Finkenstadt et al, 2005
138 A H3N2 1977 5% 1 year Pease, 1987

~600-30,000 A H1N1 1918 6-51% < 1 year Barry et al., 2008

Tab. 2: Empirical data on e�ects of immunity due to previous in�uenza infection

2.3 Invasion Threshold with Immunity

When invading a population which has previously been (partially) infected by
a similar strain, a pathogen faces an epidemic threshold for the a subsequent
outbreak, which is a critical value of transmissibility above which a second
epidemic is possible in the the same population. This critical transmissibility
threshold is a function of the transmissibility of the �rst season pathogen, T1,
and the loss of immunity, α, and can be calculated as:

Tc2 =
〈kr〉

〈kr (kr − 1)〉

where, 〈kr〉is de�ned by
∑

k kpres (k) and pres(k) is the residual network degree
distribution for our urban network model. T2 = Tc2 is equivalent to Re = 1.
In a naive population (α = 1), the transmissibility of an invading pathogen can
be quite low for successful invasion. As you consider scenarios with increasing
immunity (i.e. as α decreases), the epidemic threshold for an invading pathogen
is increasingly higher. In particular, Figure 1, shows the decreasing value of Tc2
with increasing α for a �rst-season epidemic of R0 = 1.1, 1.6, 2.1.
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Fig. 1: We calculate the pathogen transmissibility threshold required for a sec-
ond season invasion in our urban network model with loss of par-
tial immunity α and a �rst season epidemic with reproductive number
R0 = 1.1, 1.6, 2.1.

2.4 Sensitivity to Contact Patterns

The contact patterns of the populations in the pandemics of the last century
(1918, 1957 and 1968) may have di�ered from those of today. Here, we explore
sensitivity to changes in population structure of the shift that occurs in the
risk of infection from an intial pandemic season to a subsequent season. We
consider two probability distributions of contacts (degree distributions) di�er-
ent than that of our urban network model: a) the Mossong et al study [4] is
an empirical survey which reports daily conversational and physical contacts
of individuals in European countries, and b) the Eubank et al study [1] is a
synthetic population simulated based on data from the city of Portland, Oregon
that reports daily contacts. In addition to di�erences in contact structure, these
studies incorporate di�erences in the demographic structure of the population.
Speci�cally, the Eubank et al study is made up of 20% children and 51% adults,
while the Mossong et al study is made up of 28% children and 48% adults,
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compared with 23% children and 61% adults in our population model.
Figure 2 below shows that both populations still exhibit the shift in infection

risk from high contact individuals to moderate contact individuals. Thus given
higher contact rates for school-age children than adults, a shift in age-speci�c
incidence can be expected from the prior age group to the latter.

Fig. 2: We calculate risk of infection in �rst and second season epidemics for pop-
ulations with varying contact patterns. (A) Degree distributions from
our urban network model (based on [3], the Mossong et al study [4], and
the Eubank et al study [1]. (B) The degree-based risk of infection for a
naive population (no prior immunity) for each network for R0 = 1.6 (C)
The degree-based risk of infection for a subsequent season (of Re = 1.05),
following a �rst season epidemic (of R0 = 1.6) with partial immunity
(α = 0.05) for each network. The shift in risk of infection from high con-
tact individuals to moderate contact individuals in a partially immune
population is still evident.
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2.5 Sensitivity to the Reproductive Number

The reproductive number for the H1N1/09 pandemic has been estimated to be
between 1.22 and 2.3 [2, 6, 5]. Figure 3 shows that our results on the shift in
risk of infection are robust to varying R0 values.

Fig. 3: Risk of Infection for a range of initial reproductive number (R0) and
e�ective reproductive number (Re) for a second season. The shift in risk
of infection is still evident.

2.6 Sensitivity to Demographic Changes

Here, we consider disease consequences in a population with partial immunity
from a previous year as well as demographic changes. We ignore births and
deaths as they occur at either end of the population age scale and do not impact
contact patterns to a signi�cant degree. Instead, we focus on aging in the
population and the impact of this on population contact patterns. Speci�cally,
we allow aging of individuals at the boundaries of age (and thus contact) classes:
4 year olds age to 5 year olds (and move from the low-contact class of toddlers
to the high-contact class of school-aged children), 18 year olds age to be 19
years old (and move from the high-contact class of school-aged children to the
moderate-contact class of adults), and adults of age 64 age to 65 years of age
(and move from the moderate-contact class of adults to the low-contact class
of elderly.) In Figure 4, we see the di�erences in the degree distribution of the
contact networks with and without these demographic changes in populations
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with full, partial and no immunity (α = 0, 0.5, 1). As the left panel shows,
aging only impacts the degree distribution in a small way. To quantify the
disease impact of these changes, we calculate the size of the epidemic in the
populations with and without aging for various levels of immunity and also �nd
that the impact is not dramatic.

Fig. 4: Impact of the demographic process of aging on the contact network struc-
ture with varying values of immunity (left panel) and on the disease
consequences in the population (right panel.)

2.7 Comparing Stochastic Simulations to Percolation Model

Finally, we compare the predictions from our percolation-based model to stochas-
tic simulations. The standard percolation theory framework is based solely
on the degree distribution of the population contact network. Comparison to
stochastic simulations allow us to quantify the impact of higher order struc-
tural properties (such as clustering in edges, degree correlations, etc.) Below,
we compare the predictions from our percolation model to that of stochastic
simulations for the risk of infection in the second season by degree and �nd
congruent results.
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Fig. 5: Comparison of stochastic simulations and analytical percolation model
predictions for risk of infection in second season based on indivdiual
degree.
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