Supplementary material A. 

Proof of Theorem 1

In this Section we outline a proof of Theorem 1 in the main text. To prove this result we need the following lemma of Rudin [19](p.229).
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We now restate Theorem 1 here.
Theorem A2. Suppose that the log-likelihood 
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(ii) Suppose that for some 
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 then local maxima of the likelihood in the neighborhood of 
[image: image39.wmf]q

 are isolated, i.e., there is an open neighborhood 
[image: image40.wmf]N

q

ÎÀÌW

  for which there is at most one 
[image: image41.wmf]N

q

Î

)

 that is a local maximum of 
[image: image42.wmf](|)

Lx

q

.

(iii) Suppose that for some 
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Proof:

(i) Let 
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 (ii) By (i) there is an open neighborhood 
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 (iii) Let 
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Specification of embedded exponential family model

In this Section we outline the specification of an embedding of a stochastic cancer model in a general class of statistical models, the so-called exponential family [18]. This is often done in fitting cancer models to epidemiological and biological data (e.g., see references [12, 13, 14, 24]). Recall that a model is a member of the exponential family if the observed data 
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[image: image131.wmf]1

()

n

ll

y

=

 are some further auxiliary data, and we assume that the 
[image: image132.wmf]1

()

n

ll

z

=

 are all non-zero. [Note: this is not necessarily a generalized linear model (GLM).] In this case it is seen that
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so that the Fisher information matrix is given by
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