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Beam theory equations 

 

We follow standard treatments of elastic beam theory [1-3]. Consider an elastic 

beam deflected by a frictionless pin (Fig. A1). The midline of the beam is parameterized 

by the arclength s, with s = 0 at the origin of the x-y plane. The beam is deflected by a 

frictionless pin that makes contact with the beam at s = sp. The deflection of the beam is 

completely characterized by the function θ(s), to be determined.  

Consider a finite segment of the beam, between the origin and s (Fig. A1). The 

equations describing force and rotational equilibrium on this segment are respectively  

N0 = N(s) cos(θ(s)) + F(s) sin(θ(s))   (A1) 

F0 = F(s) cos(θ(s)) - N(s) sin(θ(s))   (A2) 

M(s) = M0 - xF0 - yN0    (A3) 

where N(s) is the force tangent to the beam at s, F(s) is the shear force, M(s) is the 

bending moment (calculated about the point s), and the subscript 0 indicates values at the 

origin. It is helpful to solve Eqns. (A1) and (A2) for N and F  

N(s) = N0 cos(θ(s)) - F0 sin(θ(s))   (A4) 

F(s) = F0 cos(θ(s)) + N0 sin(θ(s))   (A5) 

The coordinates x and y can be expressed as integrals of θ(s) via 
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0
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        (A6) 

Assuming the pin is frictionless, it can apply a shear force at the contact point, but 

no tangential force or bending moment. Thus, at the pin (s=sP), we have the boundary 

conditions  

NP = 0 = N0 cos(θP) - F0 sin(θP)    (A7) 

FP = F0 cos(θP)+ N0 sin(θP)    (A8) 

MP = 0 = M0 - xPF0 - yPN0    (A9) 

The shear force applied by the pin,  FP is unknown, and is solved for as part of a 

nonlinear eigenvalue problem. 

Lastly, we have the relationship between curvature and moment 
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where E is the Young’s modulus and I is the area moment of inertia. For a beam with 

circular cross section of radius R, I = πR4/4. 

Rewriting Eqn. (A7) gives N0 = F0 tan(θP). Then, using (A8) and (A9) to eliminate 

F0 and M0 in favor of FP, and substituting into (A3) gives 
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M(s) = FP xP " x(s)[ ]cos(#P ) + yP " y(s)[ ]sin(#P ){ }  (A11) 

substituting into Eqn. (A10) gives, at last 
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xP $ x(s)[ ]cos("P ) + yP $ y(s)[ ]sin("P ){ } (A12) 

Eqns. (A6) and (A12) constitute the set of equations to be solved numerically for θ(s), 

subject to the starting boundary condition θ(0)=0. For an untapered beam, R is 



independent of s. For a tapered beam, R(s) = RB(1 - γ (s/L)), where γ = 1 - (RT/RB), RB is 

the radius at the base of the beam, RT is the radius at the tip of the beam and, and L is the 

total length of the beam. 

From the deflection experiments, we know that the untapered beam maintains θ < 

90° as the pin is dragged past. Thus, for a given x value for the pin (see Fig. 2), the 

largest y value will occur when the far end of the beam is exactly at the pin (i.e. when sP 

= L).  

Eqns. (A6) and (A12) for a frictionless beam can be simplified by expressing them 

in terms of the dimensionless variables u = x/L, v = y/L and w = s/L 
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where A = 4FPL2/(πERB
4) is the dimensionless shear force at the pin. For a given taper, 

characterized by α, this presents a nonlinear eigenvalue problem for the set of four 

parameters (A, uP, vP, θP).  

We solve the set of Eqns. (A13) for the untapered case (γ = 0), using standard 

shooting methods [4]. For a given choice of A, there is a unique set (uP, vP, θP) that 

satisfies the boundary condition with the pin at the tip of the beam, wP = 1. Having solved 

this problem for a range of A values, we express the maximum scaled deflection vP,max 

directly in terms of the scaled contact distance uP. In Fig. 2 we plot the maximum 



deflection angle θmax = atan(vP,max/uP) vs. uP. In Fig. 3 we plot θmax vs. the scaled distance 

to the pin, [(uP)2+(vP,max)2]1/2.  

Other choices for γ, not solved in this paper, will give different solutions for the 

eigenvalue problem. Thus, the maximum deflection and protraction angles, plotted as a 

function of scaled contact distance, depend on the taper through γ, and on friction with 

the pin, but are otherwise independent of E, RB, and L. 
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Figure A1. Elastic beam. Top: coordinates used in the calculation. θ is the angle 

between the beam tangent vector and the x-axis. Bottom: A segment of the beam, 

between the origin and s, showing the forces and moments applied to the ends. Red: 

normal forces. Blue: shear forces. Green: bending moments. Note that the bending 

moment at s is defined to be positive if it produces an upward curvature. 

 
 
 

 


