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Mapping directed weighted networks

Here we briefly review our information theoretic ap-
proach to revealing community structure in weighted and
directed networks [1] and present a new fast stochas-
tic and recursive search algorithm to minimize the map
equation — the objective function of our method. We
have developed this algorithm to be able to accurately
partition the large number of bootstrap networks [2]. The
search algorithm can also be generalized for other objec-
tive functions.

The map equation

The objective of our flow-based and information-
theoretic method known as the map equation is to find
the structures within a network that are significant with
respect to how information or resources flow through that
network. For a detailed description of the map equa-
tion, see ref. [3]. For a dynamic visualization of the me-
chanics of the map equation, see http://www.tp.umu.
se/~rosvall/livemod/mapequation/. The following is
a short review.

There is a duality between the problem of compressing
a data set, and the problem of detecting and extracting
significant patterns or structures within those data [4–
6]. We have developed the map equation approach to
make use of this duality to detect community structure
within directed and weighted networks that inherently
are characterized by flow. For a given network parti-
tion M, the map equation specifies the theoretical limit
L(M) of how concisely we can describe the trajectory of
a random walker on the network. The underlying code
structure of the map equation is designed such that the
description can be compressed if the network has regions
in which the random walker tends to stay for a long time.
Therefore, with a random walk as a proxy for real flow,
minimizing the map equation over all possible network
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partitions reveals important aspects of network structure
with respect to the dynamics on the network.

To take advantage of the regional structure of the net-
work, one index codebook and m module codebooks, one
for each module in the network, are used to describe
the random walker’s movements. The module codebooks
have codewords for nodes within each module (and exit
codes to leave the module), which are derived from the
node visit/exit frequencies of the random walker. The
index codebook has codewords for the modules, which
are derived from the module switch rates of the random
walker. Therefore, the average length of the code de-
scribing a step of the random walker is the average length
of codewords from the index codebook and the module
codebooks weighted by their rates of use. This is the map
equation:

L(M) = qyH(Q) +
m∑

i=1

pi
�H(Pi). (1)

The first term of this equation gives the average number
of bits necessary to describe movement between modules,
and the second term gives the average number of bits
necessary to describe movement within modules. In the
first term, qy is the probability that the random walker
switches modules on any given step, and H(Q) is the en-
tropy of the module names, i.e. the frequency-weighted
average length of codewords in the index codebook. In
the second term, H(Pi) is the entropy of the within-
module movements — including an “exit code” to signify
departure from module i, i.e. the frequency-weighted av-
erage length of codewords in module codebook i — and
the weight pi

� is the fraction of within-module movements
that occur in module i, plus the probability of exiting
module i such that

∑m
i=1 pi

� = 1 + qy.

To efficiently describe a random walk using a two-level
code of this sort, the choice of partition M must reflect
the patterns of flow within the network, with each mod-
ule corresponding to a cluster of nodes in which a ran-
dom walker spends a long period of time before departing
for another module. To find the best such partition, we
therefore seek to minimize the map equation over all pos-
sible partitions M.
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Fast stochastic and recursive search algorithm

Any greedy (fast but inaccurate) or Monte Carlo-based
(accurate but slow) approach can be used to minimize
the map equation. To provide a good balance between
the two extremes, we have developed a fast stochastic
and recursive search algorithm, implemented it in C++,
and made it available online both for directed and undi-
rected weighted networks [2]. As a reference, the new al-
gorithm is as fast as the previous high-speed algorithms
(the greedy search presented in the supporting appendix
of ref. [1]), which were based on the method introduced
in ref. [7] and refined in ref. [8]. At the same time, it is
also more accurate than our previous high-accuracy algo-
rithm (a simulated annealing approach) presented in the
same supporting appendix.

The core of the algorithm follows closely the method
presented in ref. [9]: neighboring nodes are joined into
modules, which subsequently are joined into supermod-
ules and so on. First, each node is assigned to its own
module. Then, in random sequential order, each node
is moved to the neighboring module that results in the
largest decrease of the map equation. If no move results
in a decrease of the map equation, the node stays in its
original module. This procedure is repeated, each time in
a new random sequential order, until no move generates a
decrease of the map equation. Now the network is rebuilt,
with the modules of the last level forming the nodes at
this level. And exactly as at the previous level, the nodes
are joined into modules. This hierarchical rebuilding of
the network is repeated until the map equation cannot be
reduced further. Except for the random sequence order,
this is the algorithm described in ref. [9].

With this algorithm, a fairly good clustering of the
network can be found in a very short time. Let us call
this the core algorithm and see how it can be improved.
The nodes assigned to the same module are forced to
move jointly when the network is rebuilt. As a result,
what was an optimal move early in the algorithm might
have the opposite effect later in the algorithm. Because
two or more modules that merge together and form one
single module when the network is rebuilt can never be
separated again in this algorithm, the accuracy can be
improved by breaking the modules of the final state of
the core algorithm in either of the two following ways:

Submodule movements. First, each cluster is
treated as a network on its own and the main al-
gorithm is applied to this network. This procedure
generates one or more submodules for each mod-
ule. Then all submodules are moved back to their
respective modules of the previous step. At this
stage, with the same partition as in the previous
step but with each submodule being freely mov-
able between the modules, the main algorithm is
re-applied.

Single-node movements. First, each node is re-
assigned to be the sole member of its own mod-
ule, in order to allow for single-node movements.
Then all nodes are moved back to their respective
modules of the previous step. At this stage, with
the same partition as in the previous step but with
each single node being freely movable between the
modules, the main algorithm is re-applied.

In practice, we repeat the two extensions to the core
algorithm in sequence and as long as the clustering is im-
proved. Moreover, we apply the submodule movements
recursively. That is, to find the submodules to be moved,
the algorithm first splits the submodules into subsubmod-
ules, subsubsubmodules, and so on until no further splits
are possible. Finally, because the algorithm is stochastic
and fast, we can restart the algorithm from scratch every
time the clustering cannot be improved further and the
algorithm stops. The implementation is straightforward
and, by repeating the search 100 times, the final partition
is less likely to correspond to a bad clustering of a local
minimum. For each iteration, we record the clustering
if the description length is shorter than the previously
shortest description length. In practice, for the citation
networks presented in this paper, which have on the or-
der of 10,000 nodes and 1,000,000 directed and weighted
links, each iteration takes about 5 seconds on a modern
PC. We generate the significance clusterings by repeating
the algorithm 100 times for each network and bootstrap
network.
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