
Supporting Information: Accelerating the

Gillespie algorithm for large-scale biochemical

systems

Sagar Indurkhya, Jacob Beal

November 5, 2009

1 Low-Level Optimizations

In the design of complex algorithms we generally eschew discussion of low-level
optimizations because they often result in constant factor improvements that
disappear when we examine asymptotic bounds. However, here we are concerned
with both the design and implementation of the Gillespie Algorithm, so the
optimizations that result in significant constant factor performance increases
deserve mention. The depth of the topics we discuss varies, and it is important to
note that these suggestions are only heuristic in nature based on our experiences
and will almost certainly become out of date as computer processor and memory
architectures develop; indeed the best suggestion we can give is to employ a
programmer who has depth and breadth in current and state of the art code
optimization. We present the following optimization strategies because it is
also important for designers of algorithms to understand the actual cost of
different types of computation, which is non-trivial when dealing with modern
microprocessors.

Always use an optimizing compiler. The transition from a compiler that
performs mediocre optimization to a compiler that targets specific instruction
set extensions and hardware can result in dramatic runtime performance im-
provements. Many modern optimizing compilers offer services such as profile
guided optimization that allows one to execute code on specified input data and
then optimize the program under the assumption that similar data will be used
at runtime.

Write code that avoids branch mispredictions. In our implementation of
LOLCAT Method, the precompiler actually passes certain flags to the com-
piler when LOLCAT Method is being compiled, so that, for example, the
Update-Cloud-With-Primary function’s implementation actually has the full
traversal up the main tree expanded in code (loop unrolling) to avoid the over-
head of small loops. Other such optimizations are present throughout our im-
plementation of LOLCAT Method.

1



Take advantage of numerically oriented instruction set extensions. LOLCAT
Method, and more importantly the random number generator used were able to
explicitly capture certain SSE3 and SSE4 floating point optimizations via the
optimizing compiler.

Pay attention to Cache and Memory performance. The key idea here is
to (1) organize data structures such that the data that is needed is locally
available when possible (i.e. the data is in the registers or cache), and (2)
design data structures to fit the data into the lowest level of memory possible.
For example, in our results we found that on the largest model evaluated, ODM
and NRM were not even able to store their update dependency graphs in the
eight gigabytes of main memory available, while LOLCAT Method’s UDG was
able to fit in the four megabytes of L3 cache available. The speed difference
then is both noticeable and something to be concerned with.

2 Using Heaps instead of Trees

Although we have described clouds and the main tree in terms of trees, each
is actually implemented using a d-ary max-heap data structure rather than a
balanced tree due to cache efficiency issues. A d-ary max-heap is a tree stored
in memory as a linear array, in which each node has d children and the value of
each node is greater than or equal to the value of any of it’s d child nodes. In
general, the d children of node t are nodes d(t − 1) + 2 through dt + 1, and the
parent node of node t is ⌊ t−2

d
+ 1⌋. The root of the heap is located at position

1 in the array.
The cache is the processor’s onboard memory (generally L1, L2 and L3

Cache for current processors. Missing the cache often incurs an approximately
103 cycle penalty, and a page-fault incurs a 106 cycle penalty. We use d-ary
max-heaps (as opposed to a binary max-heap) because they give the heap a
smaller height. This means that updating a heap, which requires traversing the
nodes upwards from a leaf to the root, takes fewer operations. However, when
we descend down a heap, we perform a number of comparisons; if the heap has
height h, then we must perform O(h(d − 1)) = O(hd) comparison operations,
since a linear search is performed over the d child nodes when descending down
a node. As the heap grows larger in size and h increases, jumping down levels
of the heap is likely to incur a cache miss, so up to a point it is faster to perform
more comparisons per level in order to keep the number of levels smaller.

It should be noted that on modern processors from Intel and AMD, SSE
instructions allow for the vectorization of floating point operations. If we in-
struct the processor to always predict the branching backwards while searching
through a linear array, then if we have to search over d elements we incur only a
single branch-misprediction. We found that d = 64 actually made each descent
stage slightly faster than if we had used d = 2, while decreasing the height of
the tree by a factor of log2 64 = 6.

2



3 Optimized Interpreter

One way in which our implementation of LOLCAT embraces low-level opti-
mization is through compilation for an optimized interpreter. Bytecode for the
optimized interpreter is emitted during the construction of clouds.

3.1 The Optimized Interpreter

In practice, the Gillespie Algorithm often requires a simulation program to com-
pute tens of millions of iterations. LOLCAT Method uses a number of complex
self-modifying data structures to take advantage of the ideas of grouping reac-
tions by common reactants and using a sparse update dependency graph. The
Optimized Interpreter (OI) is a carefully designed program that reads precom-
piled bytecode—a language of atomic instructions that instruct the OI what
operations to perform on the data structures. In the case of the Optimized In-
terpreter, each atomic instruction is represented by a series of 32 bit integers1.

The OI is guaranteed to always be in a state such that it will correctly
interpret the bytecode it is about to execute (the bytecode can be interpreted
differently based on the state of the OI), effectively eschewing any form of error
detection or safety checks in favor of performance gain. This guarantee relies
on an understanding that the bytecode generator will generate perfectly correct
bytecode for the OI to consume.

Most of the instructions in the bytecode language are functions that update
different parts of the data structures used or that set or examine set special
states stored by the OI, such as the CURRENT-CLOUD.

Each reaction maps to a set of function calls (and the arguments to pass
to these functions) that are stored sequentially in an array of integers, which
we call the reaction tape (after the “tape” of a Turing machine). Each species
also maps to a number of function calls (and the arguments to pass to these
functions), and these are also stored sequentially in a separate array, which we
call the species tape. Generally when reaction r

∗ is executed by the simulation,
the simulation initiates the OI at the beginning of r∗’s section in the reaction
tape. Here, each species that changes as a result of executing r∗ is listed along
with the amount by which that species will change, and the OI jumps to the
appropriate position in the species tape for each species to execute the function
calls that correctly update the data structures. See Figure 1 for further details
and clarification. The reaction tape and species tape are both precompiled by
the preprocessor and passed on to LOLCAT Method.

There are six base instructions used by the optimized interpreter:

1. Update-Single-Reaction-In-SuperCache(n): Recalculates the propen-
sity of the nth reaction in the SuperCache, and updates SSC , for reactions
where the reactants are different.

1Atomic instructions that are function calls are generally followed by values to pass to the

function. Using an integer format lets each atom act as either a operation or a data value to

pass on. This greatly increases the flexibility of what the OI can do.

3



2. Update-Doublet-Reaction-In-SuperCache(n): Recalculates the propen-
sity of the nth reaction in the SuperCache, and updates SSC , for reactions
where the reactants are the same.

3. Set-Cloud(n): Set Cur-Cloud to the nth cloud, then set Cur-Cloud-

Temp to 0. The Cur-Cloud-Temp is an internal variable used to carry
the sum of the operations that occur on a particular cloud during a given
iteration. It should be equal to 0 before and after each iteration of the
simulation.

4. Update-Singlet-Reaction-In-Cloud(n, delta): Updates the Cur-Cloud

with the propensity of the nth singlet reaction in its primary tree. This
instruction is an internal operation–an operation that mutates the data in
the primary tree and sub-trees of a cloud.

5. Update-Doublet-Reaction-In-Cloud(n, delta): Updates the Cur-Cloud

with the propensity of the nth doublet reaction in its primary tree. This
instruction is an internal operation.

6. Update-SubTree-In-Cloud(n, delta): Updates the Cur-Cloud with
the propensity of its n

th sub-tree. This instruction is an internal operation.

7. Update-Cloud-With-Primary(n): Updates the main tree with the new
propensity of the Cur-Cloud. Used after internal operations are per-
formed on the Cur-Cloud.

The above instructions can be considered first-order in that all of them are
necessary to manipulate the data structures. The virtual machine can be triv-
ially expanded to include more optimized instructions. For example, some se-
quences of first-order instructions appear so frequently that they can be handled
by specialized instructions (and indeed these are present in our implementation
of LOLCAT Method):

1. Set-And-Update-Cloud-One-Pass(n, delta): Set Cur-Cloud to the
nth cloud, then updates the main tree with the new propensity of the Cur-

Cloud. Assumes no internal operations were performed on the cloud.

2. Set-Cloud-Update-Reaction-No-Primary-Update-Cloud(n1, n2, delta):
Set the Cur-Cloud variable to the n1

th cloud, and update the n2
th re-

action in the Cur-Cloud’s primary tree. Updates the cloud structure.

These instructions compress several of the above instructions. This has two
advantages: first it allows us to compress the size of the dependency graph, and
second it allows for micro-level optimizations to be performed in a very clean
and elegant fashion.

Another example of how to extend the virtual machine is to add an in-
struction like Record-Concentration. This instruction is placed in the section
of a species in the Species-Tape, and will automatically record the time and
concentration of the desired species if and only if that species concentration

4



changes. This allows for extremely efficient exact recording2 of species whose
concentration changes rarely and whose concentration is critical to watch.

4 Modelling Systems with Dynamic Volume

We describe here a simple modification to LOLCAT Method that allows it
to simulate variable volume systems. We create two sets of reactions: R0,1

(the set of zero and first order reactions), and R2+ (the set of 2nd order and
higher reactions). The propensities of the reactions in R0,1 do not depend
on the volume, whereas the reactions in R2+ do. Create two sets of all of
the appropriate data structures (SuperCache, Main Tree, Clouds), for R0,1 and
R2+ respectively, and let them share a common Update Dependency Graph and
Optimized Interpreter (so that a change in one set affects both sets of reactions
appropriately).

The reaction rate of all reactions in R2+ are linearly proportional to the
volume of the system being simulated, which means we can factor out the volume
of the system from every second or higher order operation. Let us create all
the data structures of R2+ using a volume of 1 (these reaction propensities will
be referred to as normalized reaction propensities). Let SR2+

be the sum of
the normalized reaction propensities in R2+, SR0,1

be the sum of the reaction
propensities of all reactions in SR0,1

, and V (t) be the volume of the system at
time t.

Then we can modify the first step of LOLCAT Method to choose which Main
Tree to descend down:

P (Descend Down R0,1 Main Tree) = 1 −
V (t)SR2+

SR0,1
+ V (t)SR2+

Everything else in LOLCAT Method can stay the same. Note that the
complexity of the algorithm does not increase at all, because all we are doing
is an additional O(1) time operation each iteration (to choose which Main Tree
to descend down).

2By exact recording we mean that we have will know what the concentration of that species

was at all points in time during the simulation

5



Figure 1: Execution and update of a reaction: (a) The simulation has
chosen to execute reaction 2 (R2), and the Optimized Interpreter (OI) jumps
to the beginning of the R2 section of the Reaction Tape. (b) Here the OI
will change the concentrations of the 3 species S2, S3 and S6 by +1, −1 and
−1 respectively, and perform the necessary updates on the data structures.
(c) Demonstrates the OI changing the concentration of species S2 by +1 and
jumping to the beginning of the S2 section of the Species Tape. (d) Here the
OI will execute the next four function calls on the Species Tape before jumping
back to where it left the Reaction Tape. Examples of function calls include:
(e) set the current cloud to cloud 6, and (f) set the current cloud to 5, update
reaction 7 in this cloud, and update the current cloud. We also display how
specialized function calls can be placed to trigger when a particular species
changes in concentration (g) or a particular reaction occurs (h).

6


