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Supplementary Information 
 
Distribution of mosquito population between patches 
In order to introduce variation in the number of mosquitoes in each patch without 
changing the total number in the metapopulation we use the exponential distribution for x 
in the interval [0, ξ], F(x) = λe-λx, where λ controls the degree of skew. When λ is large 
the distribution is strongly skewed and the area under the curve on [0, ξ] is very close to 
1. However, when λ is close to 0, the distribution is more uniform and the area under the 
curve defined on [0, ξ] may be much less than 1. Therefore we use the normalized 
function G(x) constructed by dividing F(x) by the total area under the curve on [0, ξ]: 
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Given n patches, the interval [0, ξ] is divided into n equal subintervals by the partition xi 
= ξ(i – 1)/n, i = 1…n + 1. The area under the curve G(x) in each subinterval gives the 
proportion of the vector population associated with that patch and multiplying by the total 
vector population size gives the actual number of vectors in the patch:  
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Throughout this study ξ = 120.  
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Construction of equations for n patch model, no transit patch 
The model integrates a SEIR framework for the host population and a SEI framework for 
the vector population [1] into a metapopulation structure in which distinct vector 
subpopulations are linked by host movement [2]. The total host population Nh is divided 
into n subpopulations Nh

j where j = 1…n is the usual destination patch of that group. 
Each subpopulation is subdivided into a further n + 1 subpopulations Nh

ij where i = 0…n 
is the current patch of those individuals. Hosts in patch 0 leave at rate ρ and travel to their 
usual destination patch with probability (1 - δ ) + δ/n and one of the other n – 1 patches 
each with probability δ/n. Hosts in patch i ≠ 0 leave at rate τ and return directly to patch 
0. Each host subpopulation is subdivided according to infection status: susceptible (Sh

ij), 
exposed (infected but not infectious, Eh

ij), infectious (Ih
ij) and recovered (Rh

ij). Hosts of 
all classes die at constant rate µh and are replaced with susceptible hosts. Infected hosts 
become infectious at rate εh. Infectious hosts recover at rate γ. Recovered hosts have 
complete lifelong immunity to re-infection. All hosts continue to move at the same rate 
regardless of their infection status. Each vector subpopulation is subdivided into 
susceptible (Sv

i), exposed (Ev
i) and infectious (Iv

i) classes. Vectors of all classes die at 
constant rate µv and are replaced with susceptible vectors. Exposed vectors become 
infectious at rate εv and remain in this class until they die. Vectors bite at rate β. So in 
patch i there are a total of βSv

i bites by susceptible vectors. Considering the proportion of 
hosts in the patch that are infectious, the host-vector transmission rate is then:  
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Following the same reasoning, in patch i, the vector-host transmission rate for hosts with 
normal destination patch j is:  
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The complete system of ordinary differential equation is thus: 
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Derivation of approximate system for n patches, no transit patch 
To simplify the model we apply a method previously used for an epidemiological 
metapopulation model with direct transmission [2]. We assume that, as long as the time 
spent away from patch 0 is relatively short, the timescale of the travel dynamics is much 
faster than the timescale of the epidemiological dynamics. Therefore we approximate the 
population size of each host type (Sh

ij, Eh
ij, Ih

ij, Rh
ij) in each patch by assuming that they 

scale with the proportion of the total population expected to be in that patch at 
equilibrium. We then define Sh

j to be the total number of susceptible hosts with normal 
destination patch j, irrespective of their current location.  Eh

j, Ih
j, Rh

j  and Nh
j are defined 

similarly. So: 
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Note that the definitions for the vector population Sv

j, Ev
j, Iv

j are unchanged and relate to 
the number of mosquitoes actually present in patch j. Also, the sum for the total 
population size here is over all patches i where that host type is currently present and is 
not the same as the sum that appears in the denominator of the transmission terms of the 
original equations, which is over all destination patches j. Taking the derivatives of the 
new variable, all the terms involving τ and ρ cancel, leaving: 
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We now wish to eliminate the ij groupings in the host population by writing them in 
terms of the j groupings. In order to estimate the proportion of the population in each 
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group we consider the disease free system, i.e. system (5) with Iv
i = 0 for all i. Then the 

susceptible population is equal to the entire population and the system is described by:  
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Setting the derivatives equal to 0 gives:  
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The I, E and R hosts groups simplify in the same way. Furthermore, we assume that the 
host travel dynamics are symmetric, so the number of hosts visiting each patch is the 

same for all patches: N/n. It follows that the total number of hosts of each group N
ik

h

k=1

n

!  is 

the same for all patches and so N
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Substituting all of these approximations back into the condensed system (7) gives the 
approximate system:  
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This simplifies more than the direct transmission model considered by [2]. In that model 
it is necessary to estimate the probability of two hosts meeting in a patch. Here the vector 
facilitates the meeting indirectly so we only need to estimate the probability of a host 
meeting a vector and the vectors never leave the patch.  
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Basic reproductive number for model with one destination patch 
Using the next generation method [3,4], the global reproductive number of the model 
with one destination patch is 
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The first five terms appear in the classical R0 for a host-vector system and give the 
expected number of transmission events before recovery or death if the initial infection is 
in patch 1 and the host population does not move. Quarantine of symptomatic infections 
would scale this quantity. The interpretation of these terms has been discussed 
extensively elsewhere [1,3]. The final term is the most relevant to this study. It takes into 
account the expected proportion of the infectious period an infected host actually spends 
in patch 1 [5]. 
 
Basic reproductive numbers for model with three destination patches 
The global reproductive number for the model with three destination patches can be 
calculated numerically using the next generation method. In addition, we define the host 
reproductive number R0

h
j as the number of secondary host infections resulting from a 

single infected host with normal destination j. The vector reproductive number R0
v

j is 
defined similarly. As set out in detail below: 
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As before, the terms compounded into Λ also appear in the classical R0 for a host-vector 
system and here we focus instead on the terms involving δ. Beginning with R0

h
j, suppose 

there is initially one infected host that normally travels to patch j. The expected number 
of secondary infections in hosts that normally travel to patch j is:  
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Here n(1 - δ )2 + 2δ(1 - δ)Nj

v corresponds to a transmission cycle entirely within patch j. 
The initial type j host infects vectors in patch j that go on to infect hosts of type j. The 
term (δ2/n)Nv corresponds to a transmission cycle that only involves type j hosts, but 
occurs entirely outside of patch j. The initial type j host travels to a random patch and 
infects the local vectors which then infect other type j hosts that travel to this patch. The 
sum of these terms represents the local maintenance of disease within the host population 
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associated with patch j. The expected number of secondary infections in hosts that 
normally travel to patches beyond j is:  
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Here (n – 2)δ(1 - δ)Nj

v corresponds to a transmission cycle in which patch j vectors 
spread the infection to other host types. The initial infected host infects vectors in patch j, 
which then infect hosts that are not of type j but are visiting patch j. The term (δ - δ2/n)Nv 
corresponds to a transmission cycle in which the type j host spreads the infections to 
other patches. The initial infected host travels to patches other than j and infects the local 
vectors which then infect hosts of type other than j visiting that patch. The sum of these 
terms represents the spread of disease to host populations associated with other patches.   
 
Turning to R0

v
j, suppose there is initially a single infected vector in patch j. Then the 

expected number of secondary vector infections within patch j is:  
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Here n(1 - δ )2 + 2δ(1 - δ)Nj

v corresponds to a transmission cycle entirely contained 
within patch j. The term δ2/Nj

v corresponds to hosts of type other than j becoming 
infected while visiting patch j and either remaining in, or returning to, patch j to re-infect 
the local mosquito population. The sum of these terms represents the local maintenance 
of disease within the patch j vector population. The expected number of secondary vector 
infections in patches beyond j is:  
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which simplifies to:  
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In (17) the term 2δ(1 – (n - 1)δ/n)(Nv - Nj

v) corresponds to a transmission cycle in which 
type j hosts spread the infection when, after being infected in patch j, they travel to a 
different patch and infect the local vector population. The term (n - 2)δ2/n)(Nv - Nj

v) 
corresponds to a transmission cycle in which hosts of type other than j spread the 
infection by visiting patch j, becoming infected, and then traveling to a different patch. 
The sum of these terms represents the spread of disease to vector populations in other 
patches.   
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Modifications for model with n destination patches and transit patch 
In order to include a transit patch in the model we introduce the host variables Sh

Aj, Eh
Aj, 

Ih
Aj, Rh

Aj and the vector variables Sv
A, Ev

A, Iv
A. Here Sh

Aj is the number of susceptible hosts 
with usual destination patch j currently in the transit patch A, Sv

A is the number of 
susceptible vectors in patch (A) and the other variables are defined in the obvious way. 
Additional differential equations for these transit patch variables are constructed in the 
same way as for the destination patches.  All other equations are the same as for the 
original model except that all fluxes out of patch 0 are into patch A and at rate ρ1 rather 
than ρ, all fluxes into patches i = 1…n are from patch A, rather than patch 0, and at rate 
ρ2 rather than ρ. Thus the system with a transit patch is described by:  
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On the assumption that the host movement dynamics are fast compared to the infection 
and demographic dynamics we can approximate the variables with multiple subscripts in 
these equations in terms of the compound variables Sh

i, Eh
i, Ih

i, Rh
i which represent hosts 

that normally travel to patch i regardless of their present location. Then the system 
reduces to:  
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Basic reproductive number for model with n identical patches plus transit patch 
If we assume that the total vector population excluding the transit patch subpopulation is 
uniformly distributed between the n destination patches, so each patch contains Nv/n 
vectors, and hosts always travel to the same destination patch, so δ = 0, then the basic 
reproductive number of the system found using the next generation method is:  
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If Nv

A = 0 and vectors are absent from the transit patch, this reduces to the classical R0 for 
a host-vector system with a host vector ratio of Nv/Nh. 
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