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A Details of the model

This appendix section describes the mathematical details of the stochastic model
of the spread of culturally transmitted traits. In particular, we derive Equations
(2)–(3) in Methods.

A.1 Single episode of illness

We begin with the special cases of the model in which there is only a single episode
of illness. This situation is specified by setting ε = 0.

A.1.1 Disease-restricted demonstration

We first consider a model in which demonstrators stop their treatment or practice
when they recover, and consequently observers are not converted by recovered
individuals. This case is specified by letting α2 = 0.

If each observer has the same probability of being converted, the number of
conversions is binomially distributed. If the number of available observers is not too
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small, this distribution is well approximated by a Poisson. Thus, given U the time
spent being ill, N is distributed as a Poisson with parameter α1U . As described in
Methods, U in turn is distributed exponentially with parameter λ = µ+ν+θ+τ+σ.
Because N is a Poisson-exponential mixture, it has a geometric distribution with
parameter

λ

λ+ α1

=
µ+ ν + θ + τ + σ

α1 + µ+ ν + θ + τ + σ

(see for example reference [1]). This can be seen through the following, letting
f(u) represent the probability density function of the exponential distribution:

P (N = n) =

∫ ∞
0

P (N = n|U = u)f(u)du

=

∫ ∞
0

e−α1u(α1u)n

n!
λe−λudu

=
λ

α1 + λ

(
α1

α1 + λ

)n
[integrate by parts n times]

where n = 0, 1, 2, ....

Cultural fitness of the trait The cultural fitness of the trait in this model is
the mean number of converts per demonstrator. This is analogous to the concept of
the basic reproductive value in epidemic theory and absolute fitness in evolutionary
theory. The mean of the geometric distribution above is

φ =E(N) =
α1

α1 + λ

/
λ

α1 + λ
=

α1

µ+ ν + θ + τ + σ
. (1)

Probability of spread of new trait The probability of the practice being
spread to at least one individual after its invention is

1− P (N = 0) = P (N ≥ 1) =
α1

α1 + λ
.

The probability of spread through the whole population, that is, fixation, is one
minus the probability of (eventual) extinction. To derive the ultimate extinction
probability, we use a result of linear birth-death processes [2]. Here, the linear
stochastic birth rate is α1 which is the rate of converting observers to the treatment,
and the death rate is λ. The extinction probability [2, p147] is then

λ

α1

if λ < α1 and 1 if λ ≥ α1. The probability of spread of the trait is therefore

P (spread) = max

(
0,
α1 − λ
α1

)
. (2)

This result can be alternatively derived by considering the process as a discrete
time branching process. In this case, the extinction probability is the smallest
solution of x in

x =
∞∑
n=0

xnP (N = n),
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giving

x = (1− p)/(1− xp)

where p = α1

α1+λ
and therefore

px2 − x+ (1− p) = 0

and
P (extinction) = min(1, (1− p)/p) = min(1, λ/(α1)).

The probability of spread of the trait is then as given in Equation (2). The reason a
discrete formulation is possible here is that the probabilities of events do not change
over time (for each individual), and thus to compute the extinction probability it
does not matter whether or not the “generations” are synchronised.

Note, in this case, the relationship between the cultural fitness of the trait and
the probability of its spread: if the cultural fitness is φ, the probability of spread
is 1− 1/φ for φ > 1 and 0 otherwise.

Optimal efficacy of trait Does a treatment with the highest efficacy τ have
the highest cultural fitness? In other words, what efficacy maximises the cultural
fitness of the behavioural trait? Under this model, the probability of spread (as
well as cultural fitness) is an “n-shaped” curve. Thus, intermediate efficacy is
favoured. The reason is that on one hand if the treatment efficacy is too low, the
practice is abandoned because recovery is too slow, and on the other hand if it
is too high, recovery is fast and opportunities for demonstrating the practice to
others are reduced. Inspecting Equation (1), this qualitative result clearly holds
as long as the abandonment rate increases with decreasing recovery rate. Figure
3 shows this relationship for alternative values of σ, ρ and a.

The optimal efficacy for this model occurs at

τ̂ =
ln(aρ)

a
− σ.

This optimal efficacy is positive when

ρ >
eaσ

a
.

In other words, if ρ < eaσ/a the treatment efficacy with the highest cultural fitness
is negative — that is, the optimal treatment is maladaptive.

A.1.2 Continued demonstration

Here we consider a second model which generalises the above model in that demon-
stration can occur after an individual has recovered. Again, recovery is permanent
with ε = 0. Note that the probability that the demonstrator recovers rather than
dying or abandoning the practice is given by

τ + σ

λ
.

Again, N is the number of observers converted by the demonstrator and U is the
time spent by the demonstrator being sick until recovery, death or abandonment.
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Let W be the time between recovery and death or abandonment if the demonstra-
tor recovered. We assume U and W are independent.

Because the sum of two independent Poisson variables is also Poisson, the
conditional distribution of N given the periods U and W is

N |U,W ∼ Poisson(α1U + α2W )

where

U ∼ Exp(λ),

W =

{
0 with probability 1− (τ + σ)/λ (death or abandonment)

WE with probability (τ + σ)/λ (recovery)

and

WE ∼ Exp(ζ)

where, in this case, ζ = µ+ θ.

Cultural Fitness of the trait Again, the expectation of the convert distribu-
tion gives the cultural fitness φ of the trait. Noting that E(W ) = E(WE)(τ+σ)/λ,
we write

φ = E(N) = E(E(N |U,W )) = α1E(U) + α2E(W )

=
α1

λ
+
α2(τ + σ)

λζ
, (3)

or written out in full,

φ =
α1

µ+ ν + ρe−a(σ+τ) + τ + σ
+

(τ + σ)α2

(µ+ ρe−a(σ+τ))(µ+ ν + ρe−a(σ+τ) + τ + σ)
.

Note that the cultural fitness of the trait is the sum of two components corre-
sponding to the periods of being ill and being healthy.

A.2 Multiple episodes of illness

In this section we turn to the most general model in which an individual can
become ill more than once, and demonstration continues after recovery. Consider
the distribution of the number of episodes of illness. Let ψ be the probability that
the process ends through death or abandonment in a given episode or in the period
of recovery immediately following the episode. This probability is given by

ψ =

(
1− τ + σ

λ

)
+
τ + σ

λ

(
1− ε

ζ

)
= 1− ε(τ + σ)

ζλ
.

Let H be the total number of episodes of illness experienced by an individual. This
random number is distributed geometrically; that is, P (H = i) = (1− ψ)i−1ψ for
i = 1, 2, 3, . . . .
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In this model, U is the total time spent by a demonstrator being ill, which is
the sum of periods of time of each episode of illness. Assuming these periods are
independent and identically distributed as exponential with parameter λ, the sum,
conditional on H, has a gamma distributed

U |H ∼ Gamma(H, 1/λ),

with

H ∼ Geometric(ψ).

Similarly, the total time spent being a healthy demonstrator (after the first
episode of illness) is

W |H =

{
WH−1 with probability 1− (τ + σ)/λ

WH with probability (τ + σ)/λ

where WH ∼ Gamma(H, 1/ζ) and WH−1 ∼ Gamma(H − 1, 1/ζ). The two cases
above correspond to death or abandonment occuring during the last phase of illness
(WH−1) and during the last phase of healthiness (WH). Finally, as before,

N |U,W ∼ Poisson(α1U + α2W ).

The unconditional distribution of N therefore has the probability mass function

P (N = n) =
∞∑
h=1

Ge(h;ψ)[
(1− q)

∫ ∞
0

∫ ∞
0

Ga(u;h, λ)Ga(w;h− 1, ζ)Po(n;α1u+ α2w)du dw +

q

∫ ∞
0

∫ ∞
0

Ga(u;h, λ)Ga(w;h, ζ)Po(n;α1u+ α2w)du dw

]
(4)

where

q =
τ + σ

λ
,

(the probability that the demonstrator recovers from a given episode of illness)
and

Ge(h;ψ) = (1− ψ)h−1ψ, (Geometric)

Po(n;α1u+ α2w) =
e−(α1u+α2w)(α1u+ α2w)n

n!
, (Poisson)

Ga(u;h, λ) =
uh−1e−uλλh

Γ(h)
(Gamma)

are the relevant probability density/mass functions and where Γ(h) is the gamma
function.
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A.2.1 Cultural Fitness

Using the same approach as before, we can derive an expression for the cultural
fitness of the trait in this general model. Noting that E(H) = 1/ψ, which is the
mean number of episodes,

φ = E(N) = E(E(N |U,W )) = α1E(U) + α2E(W )

= α1E(E(U |H)) + α2E(E(W |H))

= α1E

(
H

λ

)
+ α2E[(1− q)E(WH−1|H) + qE(WH |H)]

=
1

ψ

α1

λ
+

(
1

ψ
− 1 +

τ + σ

λ

)
α2

ζ
. (5)

This expression of the cultural fitness generalises the two models introduced in the
previous section. When there is only a single episode of illness, ε = 0 and therefore
ψ = 1 and φ reduces to the previous formula for cultural fitness (Equation 3).
With both ε = 0 and α2 = 0, the expression simplifies to the cultural fitness value
of the initial model (Equation 1). If there are multiple episodes of illness, but
demonstration only takes place during periods of illness then α2 = 0, ε > 0, and
φ = α1/(ψλ).

The conversion parameters α1 and α2 have straightforward relationships with
the cultural fitness, with both elevating the cultural fitness as they increase. The
cultural fitness of the treatment is very sensitive to increasing ε and α2 from
zero. The former change allows multiple episodes of illness while the second allows
demonstration of the treatment during healthy periods. Figures 4 and 5 show this
sensitivity for two submodels: 1) single-episode of illness with continued demon-
stration and 2) multiple episodes of illness with disease restricted demonstration.
In the vicinity of parameter values considered here, ε and α2 each has a strong
effect on cultural fitness by increasing it dramatically and by creating a high sec-
ondary peak at high efficacy values (τ). Decreasing µ or ν lengthens the periods of
being sick and being well, respectively, increasing the opportunities for spread of
the treatment and therefore its cultural fitness. More complex relationships hold
between cultural fitness and the recovery parameters σ, τ and the abandonment
parameters ρ, a, because of the trade-offs mentioned in the main text of the article.

A.2.2 Probability of spread

The probability of spread of the behavioural trait in this general model can be
considered in two ways. First, consider the probability that the trait spreads
beyond the inventor regardless of whether it spreads any further. As before, this
probability is given by Psfi = 1− P (N = 0). Using Equation (4) and noting that∫ ∞

0

∫ ∞
0

Ga(u;h, λ)Ga(w;h− 1, ζ)Po(0;α1u+ α2w)du dw

=

∫ ∞
0

uh−1λhe−u(α1+λ)

h!
du

∫ ∞
0

wh−2ζh−1e−w(α2+ζ)

(h− 1)!
dw

=

(
λ

α1 + λ

)h(
ζ

α2 + ζ

)h−1
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and writing L = λ/(α1 + λ) and M = ζ/(α2 + ζ), Psfi simplifies to

Psfi = 1−
∞∑
h=1

ψ(1− ψ)h−1((1− q)LhMh−1 + qLhMh)

= 1− ψ

(
1− q

(1− ψ)M

∞∑
h=1

((1− ψ)LM)h +
q

1− ψ

∞∑
h=1

((1− ψ)LM)h

)

= 1− Lψ(1− q + qM)

1− (1− ψ)LM

or
1− LM + Lψ(1− q)(M − 1)

1− LM + LMψ

where again q = (τ + σ)/λ.
This probability of spreading from the inventor can be viewed as an upper

bound on the ultimate probability of spread (see also Figure 5c).

A.2.3 Simulation of model

To study the ultimate probability of spread of the treatment in the population we
use computer simulations because it is not possible to derive an explicit analyti-
cal expression for this probability in the general model. In considering extinction
probabilities, a continuous time branching process is equivalent to a discrete time
branching process in which all times at which observers are converted by each
demonstrator are synchronised. This is possible because the distributions of con-
verts produced by demonstrators are independent and identical, and unaffected by
time. The algorithm we use for simulating the model is therefore as follows.

1. Specify parameter values.

2. Set a single sick demonstrator who discovers or invents the treatment. Set
number of individuals practising treatment to 1.

3. For each practising individual:

4. Generate exponential time until recovery, death or abandonment with pa-
rameter λ. Store this time.

5. Compute whether recovery occurred — with probability q = (τ + σ)/λ.

6. If recovery occurred, then

(a) generate exponential time (with parameter ζ) until sickness starts again
or death or abandonment occur. Store this time.

(b) Compute whether demonstrator becomes sick again — with probability
ε/ζ.

7. Repeat generating exponential times (go to step 4) until death or abandon-
ment occurs. Then add up all the times of being sick (U) and being well
(W ).

8. Compute α1U + α2W . Generate a Poisson variable with parameter equal to
this quantity.
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9. If the number of new converts is zero at the first “generation”, extinction oc-
curred. Otherwise, track the total number of practising individuals. Return
to step 3 in order to repeat the procedure for each practising individual in
the population. If the practising population size is beyond some (arbitrary
but large) threshold, say fixation has occurred.

10. Repeat the process from step 2 many times and track the proportion of
simulations in which extinction occurs.

11. Vary parameters and start again from step 1.

We assume fixation has occurred if the size of the population using the treatment
reaches a threshold of 500. The probability of spread is simulated as the proportion
of 1000 runs in which fixation occurs.
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