Document S1.  Background information describing prior work characterizing the Vir genes that have previously been annotated in Rickettsia genomes.

Substrate presentation (VirD4).  VirD4 and related T4SS coupling proteins (T4CPs) form an IM gate that purportedly controls the entry of effector molecules (DNA and/or protein) into the mating channel [1-5].  Substantial insight into the function of these proteins has been gained from the crystal structure of the T4CP TrwB from plasmid R388 of E. coli [6, 7].  Topologically, T4CPs have two transmembrane-spanning (TMS) regions near the N-terminus that expose a short (~45 aa) sequence to the periplasm, with the majority of the protein remaining cytosolic [8].  The periplasmic N-terminal region has been demonstrated to interact with VirB10 in the mating channel [9-12], and the entire TMS region influences the nucleotide binding properties of the C-terminal domains [13].  The C-terminal portion of the protein is comprised of an IM-proximal (/( nucleotide-binding domain and a cytosolic all-( helical domain [5, 7, 14].  Of five highly conserved motifs within these two domains, two (Walker A and B boxes) contain ATP-binding motifs [15] with demonstrated in vitro ATP hydrolysis [16, 17].  T4CPs are related to ring-shaped molecular motors, such as sporulation (SpoIIIE) and cell division (FtsK) proteins [18], and form hexameric rings in the IM [6, 7].  Hexamer oligomerization is orchestrated by the less conserved N-terminal sequences [8, 13, 19] but also includes several interactions in the C-terminal cytoplasmic domains [8].

Translocation energetics (VirB4 and VirB11).  Like VirD4, VirB4 and related proteins are IM ATPases that form hexameric oligomers [7, 20, 21].  VirB4 is typically the largest component of vir systems and contains distinct N- and C-terminal domains (NTD, CTD) with specific functions.  The NTD is comprised of the conserved CagE_TrbE_VirB domain (PF03135) that overlaps with a region proposed to mediate VirB4 multimerization [22].  The CTD contains Walker A and B boxes and is predicted to be structurally analogous to TrwB of Escherichia coli plasmid R388, and hence, VirD4 [23].  Indeed, the Walker A and Walker B motifs and related flanking regions of T4CPs and VirB4/VirB4-like proteins are grouped with other comparable yet diverse proteins, such as bacterial and archaeal repair helicases, bacteriophage ATPases and FtsK ATPases, into the PilT class of NTPases, suggesting an ancient origin of these proteins [24].  While previously considered to be primarily within the IM, three lines of evidence strongly suggest a more periplasmic localization for VirB4 [25].  First, residues have been found to interact between the C-terminus of VirB4 and the N-terminus of VirB11 in yeast two-hybrid screens.  Second, in silico homology modeling supports VirB4 hexamers stacking atop VirB11 hexamers at this defined interaction.  Finally, additional yeast two-hybrid interactions occur between the C-terminal region of VirB4 and periplasmic regions of VirB1, VirB8 and VirB10.

VirB11 and VirB11-like proteins, belong to a subclass of PulE NTPases [26], proteins involved in pilus formation and various secretion processes in Gram-negative bacteria [27, 28].  They are essential for type IV secretion [29, 30] and resemble T4CPs and VirB4 and VirB4-like proteins in their IM localization, NTP-binding ability and hexameric structure [20, 31-36].  Specifically, the NTD ring is mostly in contact with the IM and interacts with VirB4 and other Vir channel components [25], and together with the juxtaposed portion of the CTD ring, forms the nucleotide-binding site [20].  Unlike the VirB4 and VirD4 proteins, the CTD of VirB11 is more similar to a RecA domain, with four highly conserved motifs: Walker A box, Asp box, Walker B box, and His Box [31, 35].  The most prominent characteristics of the nucleotide binding site are the lack of conservation of both the Asp residue in the Walker B motif (DhhhhDE, where h = hydrophobic residue) and the C-terminal flanking Glu that are highly conserved in VirB4/VirD4 proteins.

Mating channel structure (VirB6, VirB8-VirB10).  VirB6 and related proteins are polytopic IM proteins that are essential for type IV secretion [37].  Despite little amino acid conservation across even closely related bacteria [38], elevated hydrophobicity throughout the protein is constrained, supporting its prediction as an IM protein with multiple TMS regions [39, 40].  As a contributor to channel formation, VirB6 and VirB6-like proteins stabilize VirB3 and VirB5, and also facilitate VirB7 dimerization [41] and VirB7-VirB9 heterodimerization [42].  The central and most conserved region of the protein orchestrates the export of DNA through the channel and subsequent transfer to VirB8, while regions within both the C- and N-termini are necessary for substrate transport to VirB2 and VirB9 in the OM [39].
VirB8 and related proteins are bitopic IM channel proteins essential for type IV secretion [37].  The NTD is short and exposed to the cytoplasm, with a single IM-spanning (-helix linking to the larger periplasmic CTD [43-45].  In A. tumefaciens, VirB8 is the purported scaffold for T4SS polar assembly [40] and several studies have implicated it directly interacting with over half of the Vir components (VirB1, VirB4, VirB5, VirB9-VirB11), as well as itself via dimerization [21, 43, 46-49].  Thus, VirB8 and VirB8-like proteins appear to tether the T pilus complex with the mating channel in T4SSs [21].  Regions of substrate interaction and dimerization occur in the larger CTD [37, 39, 44, 50, 51].  However, an attempt at restoring virulence in a Bacillus suis VirB8 mutant attenuated system via heterologous complementation with plasmid pSB102 TraJ (a VirB8 homolog) was only successful using a chimera of the B. suis VirB8 NTD fused to the CTD of TraJ, suggesting a conserved and possibly species specific role for VirB8 NTD [52].

VirB9 and related proteins are secreted to the OM where they likely form the pore of the mating channel [37, 53-55].  The NTD is conserved across diverse bacteria and regulates substrate transfer from the periplasm to the OM [54].  Specifically, interactions between the NTD of VirB9 and VirB10 [43, 54, 56], which are driven by conformational changes in VirB10 upon its sensing of ATP binding by VirB11 and VirD4 [57], are necessary for substrate transfer from the periplasm to the OM [37].  A central region separating the NTD and CTD lacks conservation across diverse bacteria [54] and has been suggested to be extracytoplasmic [58].  The CTD of VirB9 is stabilized by interactions with VirB7 [59-63], and this heterodimer further stabilizes other Vir components in the mating channel [42, 64].  In A. tumefaciens, a disulphide bond links VirB9Ti and VirB7Ti at residues Cys-262 and Cys-24, respectively [21, 46, 59, 60]; however, the NMR structure of the homologous TraO/TraN complex of the plasmid pKM101 T4SS of E. coli and bioinformatic analysis of several bacterial VirB9-VirB7 interactions suggest that this disulphide bond is not essential for complex formation [65].  

Like VirB8, VirB10 and related proteins are homodimers that span the IM as bitopic proteins with N-terminal proximal TMS regions [66].  However, VirB10 has a larger CTD that bridges the entire periplasm and anchors to the OM via interactions with the VirB9 [43, 54, 56].  Also, the NTDs of VirB10 and VirB10-like proteins interact with T4CPs [9-12], providing a scaffold that links T4CPs to the mating channel and IM Vir components to the OM [1].  VirB8-VirB9-VirB10 complex formation is essential for T4SS function [43, 67], and although VirB10 does not directly contact T-DNA, the effect of its TonB-like energy sensing ability [68] on other Vir components is critical for substrate transfer to the OM channel [37, 57].

Attachment (VirB3).  VirB3 and related proteins are essential for type IV secretion [1].  Like VirB5, VirB3 and VirB3-like proteins are secreted to the periplasm and OM and are thought to be involved in the formation of the T pilus [69-71].  VirB3 interacts with VirB5 in yeast two hybrid and pull down assays [72] and intracellular levels of both proteins are enhanced by VirB6 expression [41].  VirB4 expression also promotes VirB3 accumulation [73], and an active site VirB4 variant stabilized VirB3 as well as VirB8 [21], suggesting VirB3 interacts with various other Vir components in the periplasm.  Despite this, the role VirB3 and VirB3-like proteins play in type IV secretion remains unknown, although it has previously been grouped with VirB1*, VirB2 and VirB5 in the "attachment" category [74].
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