
Construction of Felid Phylogeny for Corrected Regressions
Owing to the error terms (ε) in traditional regression analyses on biological data invariably being 
correlated, as indicated by the branching structure of phylogenetic relationships, implying that 
individual species data are not truly independent [1-3], we also employed independent contrasts 
regression analysis [4-7]. We assembled a phylogenetic tree for the included species of felids based 
on literature sources, with estimated divergence times based on fossil evidence and tree topology.

The age of the Pantherinae clade has been controversial. Based on 12S RNA and 
cytochrome b sequences, Janczewski et al. (1995) concluded that the Pantherinae was the youngest 
of the extant felid lineages [8]; in contrast, based on 16S rRNA and NADH-5 genes [9], and nuclear 
genes [10], it was concluded that it was the oldest. There is no fossil evidence to support a Miocene 
age of the Pantherinae, as inferred by such studies; the oldest fossils provisionally to Panthera sp. 
are slightly older than 3.5 MYA [11-14]. All hitherto known fossils of great cats are Plio-
Pleistocene, and fossil evidence from the entire world indicate that members of this clade only 
became numerous and began differentiating in the Late Pliocene-Pleistocene. 

Isolated fossils of purported leopards (Panthera pardus) are known from ~3.8 MYA deposits 
in Africa [11-13,15], but their identity has yet to be conclusively established. They may instead 
belong to a more stem-based taxon within Panthera, or may, in fact, represent primitive pumas 
[16,17], or even cheetahs [18]; molecular studies indicate that modern lineages of the leopard did 
not begin to differentiate until within the last ~1 MYA [19,20]. Fossils from Laetoli, Tanzania, dated 
at >3.5 MYA have been attributed to lions (Panthera leo) [12-15], but this is uncertain  [11], and a 
more likely interpretation is that they belong to a more primitive, stem-taxon within Panthera 
(Hemmer et al. 2001) [16]. Lion-like cats attributable to the Eurasian cave lion (Panthera 
fossilis/spelaea) are much younger, and are known from numerous Eurasian sites from the Early-
Late Pleistocene [21-27]. The age of Panthera onca/gombaszoegensis fossils is also Late Pliocene-
Pleistocene [16,28,29]; the jaguar lineage is the sister-taxon of the lion+leopard lineage [16,30]. 
Accordingly, we set the age of the lion and leopard lineages at 2 MYA, and added another 0.5 MYA 
to encompass the age of the lion+leopard and their immediate relatives before joining with the more 
primitive tiger. 

The modern tiger (Panthera tigris) is probably around 1.5 MYA; the lineage to which it 
belongs was set at 2.5 MYA, to accommodate the inferred age of the lion+leopard lineage. Tiger 
fossils are known from the Lower Pleistocene of Central and South-east Asia [31-35], and the 
differentiation of the tiger probably occurred in the early Pleistocene [36]. The so-called “paleo-
tiger” Panthera palaeosinensis is known from the mid-Pleistocene [37], and although it has been 
referred to as a primitive tiger [38], it represents a more ancestral species of Panthera [30]. Thus, 
although new finds are Late Pliocene [18], making it one of the oldest well-known pantherine 
species, this has no direct bearing on the inferred age of the tiger lineage. 

Pumas and cheetahs are closely related [8,10,39]. Fossil remains of the puma (Puma 
concolor) are only known from the Rancholabrean (Late Pleistocene; ~400 KYA) [28,39-41]. The 
fossil puma-like cat Puma pardoides is known from the early-middle Villafranchian (Late Pliocene) 
[42,43], and isolated finds from Kvabebi are older than 2.6 MYA [17]. “Puma” lacustris from the 
Blancan may or may not be a primitive type of puma [44]. The oldest cheetahs (Acinonyx sp.) are 
also Late Pliocene (~2.5 MYA) [18,45,46]. Accordingly, we inferred the ages of the Puma and 
Acinonyx lineages as 3 MYA each; molecular studies have previously inferred an age for the Puma 
lineage of 3.2 MYA [47]. The closely related fossil clade of Miracinonyx is also no older than ~3.2 
MYA [39], suggesting that an overall age of the entire clade of perhaps 4-5 MYA. Thus, another 1.5 
MYA was added to give the Puma-Acinonyx clade an overall age of 4.5 MYA, slightly less than the 
~5 MYA suggested by Janczewski et al. (1995), and Johnson et al. (2006), and far less than >8 MYA 
suggested by Johnson & O´Brien (1997) [8-10].

The domestic cat (Felis catus) is one of the last animals to become domesticated by man, 
and although the domestication is believed to have occurred around 4000 years ago in Egypt [48], 
fragmentary finds indicate an age of perhaps 6000 years [49]. The domestic cat originated from the 
North-African wildcat (Felis silvestris libyca), and their great osteological resemblance makes older 



(6-7000 years), archaeological finds of purported domestic cats tentative, because these may have 
been from wildcats killed for their fur [50]. We infer a total age for this clade of 4.5 MYA to 
accommodate the lineage of Puma+Acinonyx and their close relatives. 

The oldest well-known member of the Lynx lineage is Lynx issiodorensis from the Blancan 
of North America [28,44,51], but fragmentary finds indicate a possible Late Hemphillian (Late 
Miocene–Early Pliocene; >5MYA) for the Lynx lineage [44,52]. To accommodate this, we assigned 
an age of 5.5 MYA to this lineage. 

The fossil record of the ocelot (Leopardus pardalis) is scarce, and includes several 
fragmentary finds from the North American Pleistocene [53,54]; most are Irvingtonian, but the 
species may well have persisted into the Sangamonian [55]; it is still found in the southern USA 
today [56,57]. The lineage was inferred to be 5.1 MYA by Mattern & McLennan (2000), but only 
2.9 MYA by Johnson et al. (2006) [10,58]. We infer an age of 6.5 MYA for this entire lineage, to 
accommodate the age of Lynx-Acinonyx. 

Fossil material referred to as Leptailurus sp., and thus on the lineage of the extant serval 
(Leptailurus serval) has been recovered at Laetoli in Tanzania and Lothagam in Kenya in deposits 
with an estimated age of 3.8-3.5 MYA, and 3-2.5 MYA, respectively [15]. We infer an age of 7.5 
MYA for this entire lineage, to accommodate the age of the sister-clade of Leopardus-Acinonyx. 

Independent contrasts for the included 3D variables were computed by subtraction of values 
in two sister taxa, or in a given taxon from the nearest tree node, as appropriate. Prior to regression 
analysis, the contrasts have to be standardized, which implies bringing them to a common variance, 
which was done by dividing each individual contrast by the square root of the sum of all the branch 
lengths that make up the contrast in question. Proper standardization implies that the resulting 
common variance be independent of the branch lengths, and this may be analysed by application of 
several methods, of which examination of plots of standard deviations of contrasts to absolute 
values of contrasts appear to be the most reliable and best understood [5-7,59,60]. We analysed such 
plots by visual inspection and by computing correlation coefficients between the standard 
deviations of the contrasts and the absolute values of the contrasts. Initially, the unmodified branch 
lengths (in MYA) were examined, and if these were found to show any discernible structure and 
have a significant (p≥0.05) correlation coefficient, we transformed the branch lengths by taking the 
square root (√); the cube root ( ), the natural logarithm (log∛ 10); and Grafens arbitrary branch length 
[1], respectively, and ran the analysis again. The approach which resulted in the lowest correlation 
coefficient was applied in the subsequent analysis of independent contrasts.  

Independent contrasts analysis produces a regression through the origin and, accordingly, no 
intercept. We used log10 bone lengths as the independent variable, and the various log10 3D data as 
dependent variables. However, owing to bone length not constituting a truly independent variable in 
a mathematical sense, as error must be assumed on both variables even using 3D scanning data, and 
since we feel it is unwarranted to assign statistical dependence to any one variable a priori, we 
decided to employ the Reduced Major Axis (model II) regression approach, since this assumes no 
dependence of one variable on another. We conducted independent contrast analysis in the program 
PDTREE [6,7,61,62], which only reports 95% confidence intervals for Least Squares (Model I) 
regression slope; however, as can be done for traditional regression analysis, we used the standard 
errors of the Least Squares regression analysis to estimate the confidence interval for the slope in 
Reduced Major Axis analysis.  
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