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1 Introduction

This supplementary material for the manuscript “Spiral-Wave Turbulence and its Control in the Presence of
Inhomogeneities in Four Mathematical Models of Cardiac Tissue” is organized as follows. In Section 2 we give
the complete partial differential equations for the Luo-Rudy Phase 1 (LRI), reduced-Priebe-Beuckelmann
(RPB), and ten Tusscher, Noble, Noble, and Panfilov (TNNP) models. Section 3 contains details of the
results of our numerical simulations for Panfilov, LRI, and RPB models in homogeneous simulation domains;
similar results for the TNNP model are contained in the main paper (Sec. on “Results”). Section 4 contains
details of the results of our numerical simulations for Panfilov, LRI, and RPB models with conduction
inhomogeneities in the simulation domain; similar results for the TNNP model are contained in the main
paper (Sec. on “Results”). Section 5 describes the results of our numerical simulations for Panfilov, LRI,
and RPB models with ionic inhomogeneities in the simulation domain; similar results for the TNNP model
are contained in the main paper (Sec. on “Results”). Section 6 is devoted to our numerical studies of
schemes for the control of spiral turbulence in Panfilov, LRI, and RPB models in homogeneous domains or
in the presence of inhomogeneities in the simulation domain; similar results for the TNNP model and for
three-dimensional domains are contained in the main paper (Sec. on “Results”).

2 Models

A The Luo-Rudy Model

In the Luo-Rudy I (LR I) model there are six components of the ionic current, which are formulated mathe-
matically in terms of Hodgkin-Huxley-type equations[1]. The partial differential equation for the transmem-
brane potential V is

∂V

∂t
+

ILR

C
= D∇2V. (1)

Here ILR is the instantaneous, total ionic-current density. The subscript LR denotes that we use the
formulation of the total ionic current described by the Luo-Rudy Phase I (LR1) model [2], where ILR =
INa + Isi + IK + IK1 + IKp + Ib, with the current densities INa (fast inward Na+), Isi (slow inward), IK
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Figure 1: (Color online) The effects of changing ǫ1 in the Panfilov model shown via pseudocolor plots (A)-
(C) of V after 3300 ms and the associated power spectra (D)-(F), obtained from time series of V from a
representative point in the square simulation domain of side L = 200 mm: (D) When ǫ1 = 0.03, the power
spectrum shows discrete lines that can be indexed in terms of one fundamental frequency (≃ 13.04 Hz); (E)
if ǫ1 = 0.02, the power-spectrum peaks can be indexed as n1ω1+n2ω2, with the two frequencies ω1 ≃ 7.09 Hz
and ω2 ≃ 11.19 Hz not rationally related to each other, i.e., the system evolves quasiperiodically in time;
(F) if ǫ1=0.01, the spiral waves break up and the power spectrum shows a broad-band background, a clear
indication of chaotic behavior.

Figure 2: Pseudocolor plots of initial spatial distributions of the transmembrane voltages V and the currents
INa, Isi, Ik, Ik1, Ikp, Ib, and Iion in our numerical simulation of the LRI model in a square domain with
L = 90 mm.
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(slow outward time-dependent K+), IK1
(time-independent K+), IKp (plateau K+), Ib (total background),

given by:

INa = GNam3hj(V − ENa); (2)

Isi = Gsidf(V − Esi); (3)

IK = GKxxi(V − EK); (4)

IK1
= GK1

K1∞(V − EK1
); (5)

IKp = GKpKp(V − EKp); (6)

Ib = 0.03921(V + 59.87); (7)

and K1∞ is the steady-state value of the gating variable K1. All current densities are in units of µA/cm2,
voltages are in mV, and Gξ and Eξ are, respectively, the ion-channel conductance and reversal potential for
the channel ξ. The ionic currents are determined by the time-dependent ion-channel gating variables h, j,
m, d, f , x, xi, Kp and K1 generically denoted by ξ, which follow ordinary differential equations of the type

dξ

dt
=

ξ∞ − ξ

τξ

, (8)

where ξ∞ = αξ/(αξ + βξ) is the steady-state value of ξ and τξ = 1
αξ+βξ

is its time constant. The voltage-

dependent rate constants, αξ and βξ, are given by the following empirical equations:

αh = 0, if V ≥ −40 mV, (9)

= 0.135 exp [−0.147 (V + 80)], otherwise;

βh =
1

0.13 (1 + exp [−0.09(V + 10.66)])
, if V ≥ −40 mV, (10)

= 3.56 exp [0.079 V ] + 3.1 × 105 exp [0.35 V ], otherwise;

αj = 0, if V ≥ −40 mV, (11)

= [
(exp [0.2444 V ] + 2.732 × 10−10 exp [−0.04391 V ])

−7.865× 10−6{1 + exp [0.311 (V + 79.23)]}
]

×(V + 37.78), otherwise;

βj =
0.3 exp [−2.535× 10−7 V ]

1 + exp [−0.1 (V + 32)]
, if V ≥ −40 mV, (12)

=
0.1212 exp [−0.01052 V ]

1 + exp [−0.1378 (V + 40.14)]
, otherwise;

αm =
0.32 (V + 47.13)

1 − exp [−0.1 (V + 47.13)]
; (13)

βm = 0.08 exp [−0.0909 V ]; (14)

αd =
0.095 exp [−0.01 (V − 5)]

1 + exp [−0.072 (V − 5)]
; (15)

βd =
0.07 exp [−0.017 (V + 44)]

1 + exp [0.05 (V + 44)]
; (16)
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αf =
0.012 exp [−0.008 (V + 28)]

1 + exp [0.15 (V + 28)]
; (17)

βf =
0.0065 exp [−0.02 (V + 30)]

1 + exp [−0.2 (V + 30)]
; (18)

αx =
0.0005 exp [0.083 (V + 50)]

1 + exp [0.057 (V + 50)]
; (19)

βx =
0.0013 exp [−0.06 (V + 20)]

1 + exp [−0.04 (V + 20)]
; (20)

αK1 =
1.02

1 + exp [0.2385 (V − EK1 − 59.215)]
; (21)

βK1 =
[0.49124 exp [0.08032 (V − EK1 + 5.476)]

1 + exp [−0.5143 (V − EK1 + 4.753)]
(22)

+ exp [0.06175 (V − EK1 − 594.31]].

The gating variables xi and Kp are given by

xi =
2.837 exp 0.04(V + 77)− 1

(V + 77) exp 0.04 (V + 35)
, if V > −100mV,

= 1, otherwise; (23)

Kp =
1

1 + exp [0.1672 (7.488 − V )]
. (24)

The values of the channel conductances GNa, Gsi, GK , GK1
, and GKp are 23, 0.07, 0.705, 0.6047 and

0.0183 mS/cm2, respectively[3]. The reversal potentials are ENa = 54.4 mV, EK = −77 mV, EK1 = EKp =
−87.26 mV, Eb = −59.87 mV, and Esi = 7.7 − 13.0287 lnCa, where Ca is the calcium ionic concentration
satisfying

dCa

dt
= −10−4Isi + 0.07(10−4 − Ca). (25)

The times t and τξ are in ms; the rate constants αξ and βξ are in ms−1.

B The Reduced Priebe-Beuckelmann Model

The reduced Priebe Beuckelmann (RPB) Model is described in detail in Ref. [4]. In this model the partial
differential equation for the transmembrane potential V is

∂V

∂t
+

IRPB

C
= D∇2V. (26)

Here IRPB is the instantaneous, total ionic-current density. The subscript RPB denotes that we use the
formulation of the total ionic current described by the RPB model, where IRPB = INa +ICa +Ito +Ik +Ik1 +
INa,Ca + INa,K + INa,b + ICa,b, with the current densities INa (fast inward Na+ current), ICa (slow inward
Ca2+ current), Ito (transient outward current), Ik (delayed rectifier K+ current), Ik1 (inward rectifier K+

current), INa,K (Na+-K+ pump current), INa,Ca (Na+/Ca2+ exchanger current, INa,b (Na+ background
current), and ICa,b (Ca2+ background current). They are given by:

INa = GNam3h2(V − ENa); (27)

4



Figure 3: (Color online) Spiral turbulence in the RPB model from our simulation in a square domain with
L = 115.2 mm: Pseudocolor plots of the transmembrane potential V showing (A) the initial condition, set
up as described in the text, and its subsequent evolution after (B) 1200 ms, (C) 1400 ms, and (D) 1800 ms.
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ICa = GCad∞fCaf(V − ECa); (28)

Ito = Gtotr∞(V − Eto); (29)

Ik = Gkx2(V − Ek); (30)

Ik1 = Gk1K1∞(V − Ek); (31)

INa,K = GNa,KfNa,Kf
′

Na,K ; (32)

ICa,b = GCa,b(V − ECa); (33)

INa,b = GNa,b(V − ENa); (34)

Here GNa, GCa, Gto, Gk, Gk1, GNa,K , GCa,b, GNa,b are maximal conductances of the respective ionic
currents.

The current through each ion channel is controlled by a set of gates; the fraction of gates open is denoted
by the gating variables. The gate fCa inactivates the Ca2+ channel depending on the concentration of Ca2+

ions; the fraction (of these gates) that are open is given by

fCa =

(

1 +
[Ca2+]i
0.0006

)

−1

. (35)

Most other gates are voltage-dependent and have two gating variables; one gets activated during the action
potential and the other one gets inactivated: m and h are voltage-dependent activation and inactivation gates
for INa, d and f for ICa, and r and t for Ito; x is the activation gate for Ik and K1 the inactivation gate of
Ik1. The rates at which these gates open or close are determined by the rate constants, denoted generically
by αξ and βξ. The gating variables, generically denoted by ξ, follow ordinary differential equations of the
type

dξ

dt
= αξ(1 − ξ) − βξξ, (36)

which can be rewritten as

dξ

dt
=

ξ∞ − ξ

τξ

, (37)

where ξ∞ = αξ/(αξ + βξ) is the steady-state value of ξ and τξ = 1
αξ+βξ

is its time constant, and the rate

constants depend on the transmembrane potential as follows:

αm = 0.32(V + 47.13)/(1.0− exp(−0.1(V + 47.13))); (38)

βm = 0.08 exp(−V/11.0); (39)

h∞ = 0.5(1 − tanh(7.74 + 0.12V )); (40)

hτ = 0.25 + 2.24
(1 − tanh(7.74 + 0.12V ))

(1 − tanh(0.07(V + 92.4)))
; (41)

αd = 14.98
exp(−0.5[(V − 22.36)/16.68]2)

(16.68
√

(2π))
; (42)

βd = 0.1471− 5.3
exp(−0.5[(V − 6.27)/14.93]2)

(14.93
√

(2π))
; (43)

αf = 0.00687/(1.0 + exp(−(6.1546− V )/6.12)); (44)
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βf =
(0.069 exp(−0.11(V + 9.825)) + 0.011)

(1 + exp(−0.278(V + 9.825)))
+ 5.75.10−4; (45)

αr = 0.5266
exp(−0.0166(V − 42.2912))

(1 + exp(−0.0943(V − 42.2912)))
; (46)

βr = 0.5149
exp(−0.1344(V − 5.0027)) + 5.186.10−5V

(1 + exp(−0.1348(V − 5.18610−5)))
; (47)

αt =
(0.0721 exp(−0.173(V − Vshift + 34.2531)) + 5.61210−5(V − Vshift))

(1 + exp(−0.1732(V − Vshift + 34.2531)))
; (48)

βt =
(0.0767 exp(−1.6610−9(V − Vshift + 34.0235)) + 1.21510−4(V − Vshift))

(1 + exp(−0.1604(V − Vshift + 34.0235)))
; (49)

tτ = pinv/(αt + βt); (50)

x∞ = 0.972/(1 + exp(−2.036 − 0.0834V )); (51)

here pinv is the scale factor for the inactivation time constant for the transient outward potassium current
(It). Its value is 1.7 for myocardial cells. Vshift is the shift in the half-inactivation voltage of It and is equal
to -4 mV in myocardial cells.

xτ = 380 exp(−(25.5 + V )(25.5 + V )/156) + 166(1 + tanh(0.558 + 0.0169V )); (52)

αk1 = 0.1/(1 + exp(0.06(V − Ek − 200))); (53)

βk1 =
(3.0 exp(0.0002(V − Ek + 100)) + exp(0.1(V − Ek − 10)))

(1 + exp(−0.5(V − Ek)))
; (54)

the voltage dependence parameter fNak in the pump current INak is given by;

fNak = 1/(1 + 0.1245 exp(−0.0037V ) + 0.0365 exp(−0.037V )); (55)

σ, the Na+
o dependence factor of INak, is given by

σ = 0.1428(exp(Nao/67.3)− 1); (56)

f
′

Nak depends on the concentration of Na+ and K+ ions:

f
′

Nak = (1/(1 + Nai)
1.5))((Ko/Ki) + 1.5); (57)

INaca = GNacafNaca; (58)

The voltage-dependence parameter fNaca in the Na−Ca exchanger current INaca is given by the equation:

fNaca =
(NaicCao exp(0.013V ) − NaicCai exp(−0.024V ))

((669921.875 + Naoc)(1.38 + Cao)(1 + 0.1 exp(−0.024V )))
; (59)
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equilibrium potentials in this model are:

ENa = (RT/F ) ln([Na+]o/[Na+]i); (60)

ECa = (RT/2F ) ln([Ca2+]o/[Ca2+]i); (61)

Eto = (RT/F ) ln(
0.043[Na+]o + [K+]o
(0.043[Na+]i + [K+]i)

); (62)

EK = (RT/F ) ln(
[K+]o
[K+]i

); (63)

here R is the universal gas constant, T is the absolute temperature, F is the Faraday constant, and
[Na+]o, [Ca2+]o, and [K+]o are the extracellular concentrations of Na+, Ca2+ and K+ concentrations, re-
spectively.

C The TNNP model

The reaction-diffusion equation for the transmembrane potential V in the TNNP model is

∂V

∂t
+

ITNNP

Cm

= D∇2V , (64)

where Cm is the membrane capacitance density. The subscript TNNP denotes that we use the formulation
of the total ionic currents described in the Ten Tusscher-Noble-Noble-Panfilov model.

Iion = INa + ICaL + Ito + IKs + IKr + IK1 (65)

+INaCa + INaK + IpCa + IpK + IbNa + IbCa,

where INa is the fast inward Na+ current, ICaL the L-type slow inward Ca2+ current, Ito the transient
outward current, IKs the slow delayed rectifier current, IKr the rapid delayed rectifier current, IK1 the
inward rectifier K+ current, INaCa the Na+/Ca2+ exchanger current, INaK the Na+/K+ pump current,
IpCa and IpK the plateau Ca2+ and K+ currents, and IbNa and IbCa the background Na+ and Ca2+ currents.

Physical units used in the model are as follows: time (t) is in milliseconds, the voltage (V ) in millivolts, the
current densities (IX) in picoamperes per picofarad, the conductances (GX) in nanosiemens per picofarad,
and the intracellular and extracellular ionic concentrations (Xi, Xo) in millimoles per liter. Area and
capacitance are related since the specific capacitance of cardiac tissue is of the order of 1µA/cm2. The
equations for the reversal potentials, currents, and gating variables in the TNNP model are given below.
The 12 gating variables are m, h, j, d, f , fCa, r, s, xs, xr1, xr2, g and the associated rate constants are αm,
βm, etc.

Reversal Potentials

The reversal potentials obey the Nernst equation:

EX =
RT

zF
log

Xo

Xi

for X = Na+, K+, Ca2+ (66)

EKs =
RT

F
log

Ko + pKNaNao

Ki + pKNaNai

, (67)

where R is the gas constant, T the temperature, z the valence of the ion, F the Faraday constant, Xo and
Xi the extra- and intra-cellular ionic concentrations, pKNa the relative IKs permeability to Na+.
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Figure 4: (Color online) Initiation of spiral waves in the TNNP model in a square simulation domain of side
L = 135 mm (see text) illustrated via pseudocolor plots of the transmembrane potential V at (A) t = 264 ms,
(B) t = 300 ms, (C) t = 336 ms, and (D) t = 524 ms. We use the configuration shown in (D) as our initial
condition to study spiral-waves dynamics in this model.
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Figure 5: Spiral turbulence in the TNNP model in a square simulation domain, with side L = 135 mm and
GCaL = 0.000044 (all other parameters as in Sec. 2C ), illustrated via pseudocolor plots of the transmembrane
potential V at (A) t = 0 s, (B) t = 0.8 s, (C) t = 1.6 s, and (D) t = 2.4 s.
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Fast Na+ Current

INa = GNam3hj(V − ENa) (68)

m∞ =
1

[

1 + exp(−56.86−V
9.03 )

]2 (69)

αm =
1

1 + exp(−60−V
5 )

(70)

βm =
0.1

1 + exp(V +35
5 )

+
0.1

1 + exp(V −50
200 )

(71)

τm = αmβm (72)

h∞ =
1

[

1 + exp(V +71.55
7.43 )

]2 (73)

αh = 0 if V ≥ −40 (74)

= 0.057exp

(

−(V + 80)

6.8

)

(otherwise)

βh =
0.77

0.13
[

1 + exp
(

−(V +10.66)
11.1

)] if V ≥ −40 (75)

= 2.7exp(0.079V ) + 3.1 × 105exp(0.3485V ) (otherwise)

τh =
1

αh + βh

(76)

j∞ =
1

[

1 + exp(V +71.55
7.43 )

]2 (77)

αj = 0 if V ≥ −40 (78)

=

(

−2.5428× 104 exp(0.2444V ) − 6.948× 10−6 exp(−0.04391V )
)

(V + 37.38)

1 + exp (0.311(V + 79.23))
(otherwise)

βj =
0.6 exp(0.057V )

1 + exp (−0.1(V + 32))
if V ≥ −40 (79)

=
0.02424exp(−0.01052V )

1 + exp (−0.1378(V + 40.14))
(otherwise)

τj =
1

αj + βj

(80)

L-type Ca2+ Current

ICaL = GCaLdffCa4
V F 2

RT

Caiexp(2V F
RT

) − 0.0341Cao

exp(2V F
RT

) − 1
(81)

d∞ =
1

1 + exp(−5−V
7.5 )

(82)

αd =
1.4

1 + exp(−35−V
13 )

+ 0.25 (83)

βd =
1.4

1 + exp(V +5
5 )

(84)
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Figure 6: (Color online) Pseudocolor plots of the initial spatial distribution of the transmembrane potential
V and the currents INa, Ito, Isi, Ik, Ik1, INa,K , and INa,Ca in our simulation of the RPB model in a square
domain with side L = 115.2 mm.

γd =
1

1 + exp(50−V
20 )

(85)

τd = αdβd + γd (86)

f∞ =
1

1 + exp(V +20
7 )

(87)

τf = 1125exp

(

−(V + 27)2

240

)

+
165

1 + exp(25−V
10 )

+ 80 (88)

αfCa =
1

1 +
(

Cai

0.000325

)8 (89)

βfCa =
0.1

1 + exp(Cai−0.0005
0.0001 )

(90)

γfCa =
0.2

1 + exp(Cai−0.00075
0.0008 )

(91)

fCa∞ =
αfCa + βfCa + γfCa + 0.23

1.46
(92)

dfCa

dt
= k

fCa∞ − fCa

τfCa

(93)

k = 0 if fCa∞ > fCa and V > − 60 mV

= 1 (otherwise)

τfCa = 2 ms (94)

Transient Outward Current

Ito = Gtors(V − EK) (95)

r∞ =
1

1 + exp(20−V
6 )

(96)
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τr = 9.5exp

(

−(V + 40)2

1800

)

+ 0.8 (97)

s∞ =
1

1 + exp(V +28
5 )

for endocardial cell types (98)

=
1

1 + exp(V +20
5 )

for epicardial and M − cell types (99)

τs = 1000exp

(

−(V + 67)2

1000

)

+ 8 for endocardial cell types (100)

= 85exp

(

−(V + 45)2

320

)

+
5

1 + exp(V −20
5 )

+ 3 for epicardial and M − cell types (101)

Slow Delayed Rectifier Current

IKs = GKsxs
2(V − EKs) (102)

xs∞ =
1

1 + exp(−5−V
14 )

(103)

αxs =
1100

√

1 + exp(−10−V
6 )

(104)

βxs =
1

1 + exp(V −60
20 )

(105)

τxs = αxsβxs (106)

Rapid Delayed Rectifier Current

IKr = GKr

√

Ko

5.4
xr1xr2(V − EK) (107)

xr1∞ =
1

1 + exp(−26−V
7 )

(108)

αxr1 =
450

1 + exp(−45−V
10 )

(109)

βxr1 =
6

1 + exp(V +30
11.5 )

(110)

τxr1 = αxr1βxr1 (111)

xr2∞ =
1

1 + exp(V +88
24 )

(112)

αxr2 =
3

1 + exp(−60−V
20 )

(113)

βxr2 =
1.12

1 + exp(V −60
20 )

(114)

τxr2 = αxr2βxr2 (115)

Inward Rectifier K+ Current

IK1 = GK1

√

Ko

5.4
xK1∞(V − EK) (116)
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Figure 7: Plots showing the dependence of the currents INa, Isi, Ik Ik1, Ikp and Ib on time t during the
course of the action potential from our single-cell simulation of the LRI model. Negative currents move into
the cell and positive currents move out of the cell.

αK1 =
0.1

1 + exp (0.06(V − EK − 200))
(117)

βK1 =
3 exp (0.0002(V − EK + 100)) + exp (0.1(V − EK − 10))

1 + exp(−0.5(V − EK))
(118)

XK1∞ =
αK1

αK1 + βK1
(119)

Na+/Ca2+ Exchanger Current

INaCa = kNaCa

exp
(

γV F
RT

)

Nai
3Cao − exp

(

(γ−1)V F

RT

)

Nao
3Caiα

(KmNai
3 + Nao

3)(KmCa + Cao)
(

1 + ksatexp
(

(γ−1)V F

RT

)) (120)

Na+/K+ Pump Current

INaK = PNaK

KoNai

(Ko + KmK)(Nai + KmNa)
(

1 + 0.1245 exp
(

−0.1V F
RT

)

+ 0.0353 exp
(

−V F
RT

)) (121)

Plateau Currents

IpCa = GpCa

Cai

KpCa + Cai

(122)

IpK = GpK

V − EK

1 + exp(25−V
5.98 )

(123)
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Background Currents

IbNa = GbNa(V − ENa) (124)

IbCa = GbCa(V − ECa) (125)

Calcium Dynamics

Ileak = Vleak(Casr − Cai) (126)

Iup =
Vmaxup

1 +
(

Kup

Cai

)2 (127)

Irel =

(

arel

Casr
2

brel
2 + Casr

2 + crel

)

dg (128)

g∞ =
1

1 +
(

Cai

0.00035

)6 if Cai ≤ 0.00035 (129)

=
1

1 +
(

Cai

0.00035

)16 (otherwise)

τg = 2 ms (130)

dg

dt
= k

g∞ − g

τg

(131)

k = 0 if g∞ > g and V > −60 mV

= 1 (otherwise)

Caibufc =
Cai×Bufc

Cai + Kbufc

(132)

dCaitotal

dt
= −

ICaL + IbCa + IpCa − 2INaCa

2VCF
+ Ileak − Iup + Irel (133)

Casrbufsr =
Casr×Bufsr

Casr + Kbufsr

(134)

dCasrtotal

dt
=

VC

VSR

(−Ileak + Iup − Irel) (135)

Sodium Dynamics

dNai

dt
= −

INa + IbNa + 3INaK + 3INaCa

VCF
(136)

Potassium Dynamics

dKi

dt
= −

IK1 + Ito + IKr + IKs − 2INaK + IpK + Istim − Iax

VCF
(137)

Model Parameters

A. Channel conductances

GNa: Maximal fast Na+ current (INa) conductance =14.838 nS/pF
GCaL: Maximal L-type Ca2+ current (ICaL) conductance =1.75 × 10−4 cm2 · µF−1·s−1
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Figure 8: (Color online) The spiral-turbulence (ST) state in the TNNP model, with a square obstacle of side
l = 27 mm at (63 mm, 27 mm) in a square simulation domain with L = 135 mm for GCaL = 0.000044 (and
all other parameters as in 2 C), illustrated via pseudocolor plots of V shown in (A), (B), (C), and (D) at
t = 0.8, 1.6, 2.4, and 3.2 s, respectively.

16



Gto: Maximal transient outward current (Ito) conductance =0.294 nS/pF (for epicardial and M-cell), 0.073
nS/pF (for endocardial cell)
GKs: Maximal slow delayed rectifier current (IKs) conductance =0.245 nS/pF (for epicardial and endocar-
dial), 0.062 nS/pF (for M-cell)
GKr: Maximal rapid delayed rectifier current (IKr) conductance =0.096 nS/pF
GK1: Maximal inward rectifier K+ current (IK1) conductance =5.405 nS/pF
GpCa: Maximal plateau Ca2+ current (IpCa) conductance =0.825 nS/pF
GpK : Maximal plateau K+ current (IpK) conductance =0.0146 nS/pF
GbNa: Maximal background Na+ current (IbNa) conductance =0.00029 nS/pF
GbCa: Maximal background Ca2+ current (IbCa) conductance =0.000592 nS/pF

B. Ion concentration

Nao: Extracellular Na+ concentration =140 mM
Cao: Extracellular Ca+ concentration =5.4 mM
Ko: Extracellular K+ concentration =2 mM

C. Cell geometry (Volume)

VC : Cytoplasmic volume =16404 µm3

VSR: Sarcoplasmic recticulum volume =1094 µm3

D. Other parameters

pKNa: Relative IKs permeability to Na+ =0.03

kNaCa: Maximal Na+/Ca2+ exchanger current (INaCa) =1000 pA/pF
kmNai: Nai half-saturation constant for INaCa =87.5 mM
kmCa: Cai half-saturation constant for INaCa =1.38 mM
ksat: Saturation factor for INaCa =0.1
α: Factor enhancing outward nature of INaCa =2.5
γ: Voltage dependence parameter of INaCa =0.35

PNaK : Maximal INaK =1.362 pA/pF
KmK : Ko half-saturation constant of INaK =1 mM
KmNa: Nai half-saturation constant of INaK =40 mM

KpCa: Cai half-saturation constant of IpCa =0.0005 mM

Vleak: Maximal Ileak =0.00008 ms−1

Vmaxup: Maximal Iup =0.000425 mM/ms
Kup: Half-saturation constant of Iup = 0.00025 mM

arel: Maximal CaSR-dependent Irel =0.016464 mM/ms
brel: CaSR half-saturation constant of Irel =0.25 mM
crel: Maximal CaSR-independent Irel =0.008232 mM/ms
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Figure 9: (Color online) Pseudocolor plots of V for the TNNP model showing a spiral wave attached to
a square obstacle of side 27 mm placed at (63 mm, 22.5 mm), and other parameters as in Fig. 8, at (A)
t = 0.8 s, (B) t = 1.6 s, (C) t = 2.4 s, and (D) t = 3.2 s.

Bufc: Total cytoplasmic buffer concentration =0.15 mM
Bufsr: Total sarcoplasmic recticulum buffer concentration =10 mM
Kbufc: Cai half-saturation constant for cytoplasmic buffer =0.001 mM
Kbufsr: CaSR half-saturation constant for sarcoplasmic recticulum buffer =0.3 mM

The initial gating variables and initial ion concentrations for this model are as follows:
m: Activation gate for INa = 0;
h: Fast inactivation gate for INa = 0.75;
j: Slow inactivation gate for INa = 0.75;

d: Activation gate for ICaL = 0;
f : Inactivation gate for ICaL = 1;
fCa: Intracellular calcium-dependent inactivation gate for ICaL = 1;
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r: Activation gate for Ito = 0;
s: Inactivation gate for Ito = 1;

xs: Activation gate for IKs = 0;

xr1: Activation gate for IKr = 0;
xr2: Inactivation gate for IKr = 1;

g: Calcium-dependent inactivation gate for Irel = 1;

Nai: Intracellular Na+ concentration =11.6 mM
Cai: Intracellular Ca+ concentration =0.0002 mM
Ki: Intracellular K+ concentration =138.3 mM
Casr: Free Ca2+ concentration in the sarcoplasmic recticulum (SR) =0.2 mM

3 Spiral waves in homogeneous domains

A Spiral waves in the Panfilov model

To obtain a spiral wave in the Panfilov model we use [5] the following broken wave front at time t = 0:
g = 2, for 0 ≤ x ≤ L and 0 ≤ y ≤ L

2 , and g = 0 elsewhere; and V = 0 everywhere except for y = L
2 + 1

and 0 ≤ x ≤ L
2 , where V = 0.09. Spiral turbulence then sets in if L ≥ 128 mm and we use the parameters

given in Eq.(1), as shown, e.g., via pseudocolor plots of V and g in Ref. [5]. (In three dimensions, a similar
broken wave yields scroll waves of the type that we will show below.) More pseudocolor plots of V are given
in Figs. 1 A-C for different values of ǫ1; at large values of ǫ1 [e.g., ǫ1 = 0.03 in Figs. 1 A and D] we get
a simple, periodically rotating spiral wave; at somewhat lower values [e.g., ǫ1 = 0.02 in Figs. 1 B and E]
quasiperiodic behavior is obtained because the tip of the spiral meanders; and, at even lower values of ǫ1,
the end of the initial broken wave, which is not at the boundary, curls up and develops into a spiral wave
that breaks up subsequently [Figs. 1 C and F]. This spiral-wave break up is associated with the onset of
spatiotemporal chaos. Several positive Lyapunov exponents have been reported in this state. The number
of positive exponents and the Kaplan-Yorke dimension DKY increase with L, as shown in Ref. [6, 7] for this
model. The time series for V , from a representative point in the simulation domain, also shows signatures
of the underlying spral-wave states; in particular, the power spectra, Figs. 1 D-F, of such time series display,
respectively, the characteristics of periodic, quasiperiodic, and chaotic behaviors; in particular, the last of
these shows the broad-band background associated with chaos.

B Spiral waves in the LRI model

To initiate spiral waves in our simulations of the LRI model we begin by injecting a plane wave into the
domain by applying a stimulation current of 150µA/cm2 for 6 ms at the bottom boundary. As this plane
wave moves towards the top boundary and 276 ms after the first stimulus, a second stimulus of 150µA/cm2

is applied, for 1 ms, on the bottom boundary, till x = 22.5 mm, parallel to the first wave and in the region
behind it. This is a broken wave in the wake of the initial plane wave. As the first wave moves further
towards the top boundary, the second wave also moves upwards, and its free end curls up and eventually
forms a spiral wave. We now change the conductivity to half its value (i.e., from 0.01 to 0.005) from 276 ms
to 460 ms, so that the wave remains in the medium; we then bring the conductivity back to its original
value. (Here and henceforth we do not specify the units for the conductivities, conductances, etc,; these are
provided in Secs 2 A, B, and C for the LRI, RPB, and TNNP models, respectively.) The spiral wave now
develops and starts breaking up by 500 ms.
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Figure 10: (Color online) The spiral wave moves away from the square simulation domain of side L = 135 mm
for the TNNP model if a square obstacle of side l = 27 mm is placed at (58.5 mm, 27 mm), and other
parameters as in Fig. 8, at (A) t = 0.4 s, (B) t = 0.8 s, (C) t = 1.6 s, and (D) t = 2.4 s.
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A spiral wave prepared by such a procedure is shown in Fig. 2 via pseudocolor plots of V and the currents
in the LRI model; this is the initial condition we use in our simulations of the LRI model both with and
without inhomogeneities. At the moment the first plane wave is initiated the currents and gating variables
are initialised as follows: the gating variables are set to their steady-state values, such as h∞, and then the
currents are calculated for these values of the gating variables

C Spiral waves in the RPB model

Figure 11: (Color online) Pseudocolor plots of V in the RPB model showing spiral break up in a simulation
domain, with side L = 11.52 cm and a square obstacle of side 2.25 cm at (6.75 cm, 5.4 cm), at (A) t = 0.4 s,
(B) t = 1 s, (C) t = 1.6 s, and (D) t = 2 s, respectively.

To initiate spiral waves in our simulations of the RPB model we begin by injecting a plane wave into the
domain by applying a stimulation current of 100µA/cm2 for 6 ms at the left boundary. As this plane wave
moves towards the right boundary and 410 ms after the first stimulus, a second stimulus of 150µA/cm2 is
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applied, for 0.35 ms, on the bottom boundary, perpendicular to the first wave and in the region behind it.
This leads to the formation of a narrow, linear region of electrical activation, behind the original plane wave,
which evolves into a spiral wave by about 1230 ms. Given the conductivity constant we use, namely, 0.001
(see Sec. 2B), this spiral wave moves away from the simulation domain. To obtain a broken spiral wave
that stays in the domain, we also have to change the conductivity to 0.0005 between 430 ms and 1230 ms;
after this we reset the value of the conductivity to 0.001. At the moment the first plane wave is initiated
the currents and gating variables are initialised as follows: the gating variables are set to their steady-state
values, such as h∞, and then the currents are calculated for these values of the gating variables and the
resting value of V . The procedure outlined above yields rich spatiotemporal dynamics that is shown via the
sequence of pseudocolor plots for the transmembrane potential V and the currents INa, It, at t = 2000 ms;
the states shown in these figures are used as initial conditions for our subsequent simulations of the RPB
model both with and without inhomogeneities. In the absence of inhomogeneities such an initial condition
leads to broken spiral waves as shown in the illustrative pseudocolor plot of V in Fig. 3.

D Spiral waves in the TNNP model

We obtain spiral waves in the TNNP model by injecting a plane wave into the domain via a stimulation
current of 150µA/cm2 for 2 ms at the left boundary. As this plane wave moves towards the right boundary
(Fig. 4 A) and 270 ms after the first stimulus, we apply a second stimulus of 450µA/cm2 along a line behind
this wave but parallel to it (x = 290, 1 ≤ y ≤ 250) for 10 ms. As the first wave moves further towards
the right, the free end of the new stimulus is able to move into the area behind the first wave; a hook-like
proto spiral appears at this free end (Fig. 4 B). We now change the conductivity D from 0.00154 cm2/ms to
0.000385 cm2/ms between 304 ms to 524 ms; this yields the fully developed spiral wave of Fig. 4 D; we then
reset the conductivity to its original value after 524 ms. At the moment the first plane wave is initiated the
currents and gating variables are initialised as follows: the gating variables are given in Sec. 2 C and the
currents are calculated for these values of the gating variables and the resting value of V , which is −86.2 mV.

Given the parameters that we have used so far for the TNNP model we get a single spiral wave by the
procedure described in the main paper. We have been able to obtain spiral-wave breakup in this model only
by changing some conductances. For instance, if we change GCaL to one fourth of its maximal value (i.e.,
we set GCaL = 0.000044), but hold all other parameters at the values specified in Sec 2C, we get the spiral
turbulence shown via the pseudocolor plots of Fig. 5; we can also get similar spiral turbulence if, instead of
changing GCaL, we set GpCa = 3.825.

E A comparison of spiral waves in different models

From our studies of spiral waves in the four models described above, we see that many qualitative features
of spiral-wave dynamics are the same in the Panfilov, LRI, RPB, and TNNP models. However, there are
important differences, some qualitative and the others quantitative. For example, the Panfilov model cannot
address directly any questions regarding currents in ion channels since it does not follow their evolution
but only considers one slow recovery variable g. The LRI, RPB, and TNNP models do give spatiotemporal
information for several ion-channel currents as shown, for representative cases, in Figs. 2, and 6. At any
given time, the qualitative form of the spatial organization of these currents can be surmised from the
spatial distribution of the transmembrane potential V and the dependence of these currents on V at the
level of a single cell. To illustrate this we show for the LRI model, in Fig. 7, the action potential and
the temporal evolution of the currents from a single-cell simulation (i.e., without the diffusion term in the
LRI equations [5]). For instance, at the single-cell level, the sodium current INa is substantial only at the
beginning of the action potential (Fig. 7); the most prominent parts of the spiral waves in pseudocolor plots
of V appear in regions of the simulation domain where, locally, V assumes a value close to the sharp peak
in the single-cell action potential; thus pseudocolor plots of the sodium current INa (Fig. 2) show significant
structure only in narrow strips that follow closely the prominent parts of the spiral waves in pseudocolor
plots of V (Fig. 2). By contrast, the slow inward calcium current Isi is significant in the plateau regime
of the action potential (Fig. 7); thus pseudocolor plots of Isi (Fig. 2) show structure in most parts of the
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Figure 12: (Color online) Pseudocolor plots of V in the RPB model showing a spiral wave anchoring to the
obstacle in a square simulation domain, with side L = 11.52 cm and a square obstacle of side 2.25 cm at
(5.4 cm, 5.4 cm), at (A) t = 0.4 s, (B) t = 1 s, (C) t = 1.6 s, and (D) t = 2 s, respectively.

23



simulation domain, but the underlying spiral wave in V is still discernible. The potassium current IK1 is
substantial in the plateau and repolarization regimes of the action potential (Fig. 7), so we should expect
pseudocolor plots of IK1 to have significant structure not only along prominent parts of the spiral wave in
V but also along the back of this wave, where repolarization occurs; this expectation is borne out as can be
seen from Fig. 2. The leak current (Ib) is proportional to the voltage (Fig. 7), so the pseudocolor plot of Ib

follows that of V (Fig. 2).

4 Conduction inhomogeneities

Figure 13: (Color online) Pseudocolor plots of V in the RPB model showing a spiral wave moving away from
a square simulation domain, with side L = 11.52 cm and a square obstacle of side 2.25 cm at at (4.95 cm,
4.5 cm), at (A) t = 0.4 s, (B) t = 1 s, (C) t = 1.6 s, and (D) t = 2 s, respectively.

In the main text we have investigated the effect of an obstacle on a single spiral wave in the TNNP
model. We now show that an obstacle affects a state with spiral turbulence (in the absence of the obstacle)
in qualitatively the same way in which it influences a single spiral wave, i.e., the final state of the system
depends sensitively on the position of the obstacle. Recall that, in the homogeneous TNNP model (Sec. 3D),
we obtained spiral turbulence by setting GCaL = 0.000044 (or by using GpCa = 3.825). In our studies with
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obstacles we use GCaL = 0.000044 and all other parameters as in Sec. 2C. We now insert a square obstacle
of side l = 27 mm into a square simulation domain of side L = 135 mm. When the obstacle is at (63 mm,
27 mm), the system remains in the ST state (Fig. 8 ); if it is at (63 mm, 22.5 mm), the system evolves from
the ST to the RS state with one rotating spiral wave anchored at the obstacle (Fig. 9). and with the obstacle
at (58.5 mm, 27 mm) spiral waves get eliminated completely and we get a quiescent state (Fig. 10).

We have also carried out systematic studies of spiral-wave dynamics in the presence of a circular obstacle
in the TNNP model; in this case too the results are qualitatively similar to those that we obtain with a
square obstacle. We use a circular obstacle of radius 16.875 mm in the 135 mm square simulation domain
with conductivity constant D = 0.00154 cm2/ms; we introduce a conduction inhomogeneity by reducing the
conductivity constant inside the inhomogeneity to a very small value, namely, 10−6 cm2/ms. (Since the
conductivity constant is not identically zero inside the inhomogeneity, we do not need to impose Neumann
boundary condition on the circular boundary.) We find that, when the center of this circular obstacle is
at (67.5 mm, 33.75 mm), the system evolves into the state ST as shown in Fig. 14; if it is at (56.25 mm,
33.75 mm), a single rotating spiral (RS) gets attached to the obstacle (Fig. 15); and, with the obstacle at
(67.5 mm, 22.5 mm), spiral waves get eliminated completely and we get a quiescent state Q (Fig. 16).

The sensitive dependence of spiral-wave dynamics on the position of an obstacle also occurs in the RPB
model. For example, in Fig. 11 we show representative pseudocolor plots of the transmembrane potential V
for the RPB model in a square domain of side L = 115.2 mm with a square obstacle of side l = 22.5 mm; in
all cases we start with the initial condition described above. If this obstacle is placed with its left bottom
corner at (6.75 mm, 5.4 mm) in the domain, then the spiral wave breaks up and the system remains in the
state ST. But when the same obstacle is placed at (5.4 mm, 5.4 mm), the spiral wave gets anchored to the
obstacle (state RS), as illustrated in Fig. 12. If we move the left bottom corner of the obstacle to (4.95 mm,
4.5 mm), as in Fig. 13, then all spiral waves move away from the medium and leave it in the quiescent state
Q.

The stability diagrams (see the main paper) are shown, respectively, in Figs. 17 and 18 for LRI and RPB
models with the simulation domains divided into small square regions of side lp = 4.5 mm The color of each
small square indicates the final state of the system when the position of the lower-left corner of the obstacle
coincides with that of the small square: red, blue, and green indicate, respectively, ST, RS, and Q. In both
these simulations we use square obstacles with sides 22.5 mm; the square simulation domains have sides
L = 90 mm and L = 115.2 mm for the LRI and RPB models, respectively. For the TNNP model we present
the partial stability diagram for GpCa = 3.825 in Fig. 19, and square obstacle of sides 22.5 mm; all other
parameters are as specified in the figure captions and in Sec. 2 C. These partial stability diagrams suggest
that the boundaries between ST, RS, and Q states in the LRI and RPB models are as complicated as in the
simple Panfilov model. Thus, as we have stated earlier, spiral-wave dynamics in all these models depends
very sensitively on the position of a conduction inhomogeneity.

5 Ionic Inhomogeneities

To study ionic inhomogeneities (Sec. on “Results” of the main paper) We now introduce a square inhomo-
geneity in ǫ1 in the Panfilov model (all other parameters are uniform over the simulation domain): ǫ1 is
assigned the value ǫin

1 inside a square region; and outside this square it has the value ǫout
1 . Different choices

of ǫin
1 and ǫout

1 lead to interesting spiral-wave dynamics. For example, with a square patch of side 40 mm,
ǫin
1 = 0.02 and ǫout

1 = 0.01, we obtain spatiotemporal chaos for most positions of this inhomogeneity; but
for certain critical positions of this inhomogeneity all spiral waves are completely eliminated; e.g., when the
inhomogeneity is at (x = 130 mm, y = 80 mm), spiral waves move towards the boundaries of the simulation
domain where they are eventually absorbed (Fig. 20). For yet other positions spatiotemporal chaos is ob-
tained outside the inhomogeneity but inside it the spiral wave shows a quasiperiodic temporal evolution as
illustrated in Fig. 21.

If, instead, ǫin
1 = 0.01 and ǫout

1 = 0.02 or 0.03, spiral-wave break up occurs inside the inhomogeneity but
it coexists with unbroken periodically rotating spiral waves outside it (Fig. 22), as noted previously by Xie
et al. [8].
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Figure 14: (Color online) The spiral-turbulence (ST) state in the TNNP model, with a circular obstacle of
radius r = 16.875 mm at (67.5 mm, 33.75 mm) in a square simulation domain with L = 135 mm, illustrated
via pseudocolor plots of V shown in (A), (B), (C), and (D) at t = 200, 400, 800, and 1160 ms, respectively.
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Figure 15: (Color online) Pseudocolor plots of V for the TNNP model showing a spiral wave attached to a
circular obstacle of radius 16.875 mm placed at (56.25 mm, 33.75 mm), at (A) t = 200 ms, (B) t = 400 ms,
(C) t = 800 ms, and (D) t = 1160 ms.
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Figure 16: (Color online) The spiral wave moves away from the square simulation domain of side L = 135 mm
for the TNNP model if a circular obstacle of radius r = 16.875 mm is placed at (67.5 mm, 22.5 mm), at (A)
t = 200 ms, (B) t = 400 ms, (C) t = 800 ms, and (D) t = 1160 ms.
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Figure 17: (Color online) Detail of the stability diagram for the LRI model with the initial condition described
in the text: A square obstacle of side 22.5 mm is placed at different positions in a square simulation domain
with side L = 90 mm. For each one of these positions of the obstacle we determine the final state of the
system; the colors of the small squares, of side lp = 4.5 mm, indicate the final state of the system when
the position of the bottom-left corner of the obstacle coincides with that of the small square (red, blue, and
green denote ST, RS, and Q, respectively).
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Figure 18: (Color online) Detail of the stability diagram for the RPB model with the initial condition
described in the text: A square obstacle of side 22.5 mm is placed at different positions in a square simulation
domain with side L = 115.2 mm. For each one of these positions of the obstacle we determine the final state
of the system; the colors of the small squares, of side lp = 4.5 mm, indicate the final state of the system
when the position of the bottom-left corner of the obstacle coincides with that of the small square (red, blue,
and green denote ST, RS, and Q, respectively).
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Figure 19: (Color online) Detail of the stability diagram for the TNNP model for GpCa = 3.825 and all
other parameters as in the 2 C and with the initial condition described in the text: A square obstacle of
side 22.5 mm is placed at different positions in a square simulation domain with side L = 135 mm. For
each one of these positions of the obstacle we determine the final state of the system; the colors of the small
squares, of side lp = 11.25 mm, indicate the final state of the system when the position of the bottom-left
corner of the obstacle coincides with that of the small square (red, blue, and green denote ST, RS, and Q,
respectively).
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Figure 20: (Color online) Pseudocolor plots of V illustrating the effect of an inhomogeneity in the Panfilov
model: With a square inhomogeneity of side 40 mm, ǫin

1 = 0.02 and ǫout
1 = 0.01, at (x = 130 mm, y = 80 mm)

spiral waves move towards the boundaries of the simulation domain where they are eventually absorbed as
shown in (A) at t = 550 ms, (B) t = 1100 ms, (C) t = 1650 ms, and (D) at 2200 ms.

We now present simulations of the homogeneous LRI model in a square domain of side 90 mm, with
all parameters except Gsi as in Sec. 2 A and the initial condition described above. In Fig. 26 we show
pseudocolor plots of V , which are obtained after 100 ms, and the associated power spectra that we calculate
from a time series of V from a representative point; we show plots for Gsi = 0.02, 0.035, 0.05, and 0.07,
(units in Sec. 2 A) [2]. (For single-cell action potentials for these values of Gsi, see Fig. 23.) Data for the
time series in Fig. 26 are collected for 262144 iterations, i.e., 2621.44 ms. From this figure we see that, as
Gsi increases, a simple rotating spiral evolves to a state with broken spiral waves and spatiotemporal chaos;
the power spectra obtained from the time series of V , taken from a representative point in the simulation
domain, also mirror this evolution: At low values of Gsi the power spectra show sharp peaks that can
be indexed with one fundamental frequency and its multiples, a mark of periodic temporal behavior; as
Gsi increases this indexing requires independent, incommensurate frequencies and their multiples (i.e., the
temporal evolution is quasiperiodic); and finally at large values of Gsi we obtain spectra with a significant
broad-band background that is a signature of chaos. Figure 26 is the LRI-model analog of Fig. 1 for the
Panfilov model.
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We now investigate the effects of ionic inhomogeneities in the LRI model in some illustrative cases by
introducing inhomogeneities in Gsi and the potassium conductance Gk. Consider first a simulation domain
with Gsi = Gout

si = 0.07 everywhere except in a square patch with side 18 mm where Gsi = Gin
si = 0.02 (we

will refer to this as a Gsi inhomogeneity); all other parameters for this LRI simulation are as in Sec. 2 A.
With the initial condition given above, we study spiral-wave dynamics in this system with the square Gsi

inhomogeneity placed in different positions. For most positions we find a state with spiral turbulence;
but for certain positions, e.g., when the inhomogeneity is at (49.5 mm, 45.0 mm) all spiral waves move
towards the boundary where they are absorbed. As in the case of conduction obstacles we find that Gsi

inhomogeneities in the LRI model can affect spiral break up significantly; and the final state of the system
depends sensitively on the position of the ionic inhomogeneity. This is illustrated in Figs. 24 A and B for
a square Gsi inhomogeneity of side 2.25 cm with Gin

si = 0.07, Gout
si = 0.02, and a simulation domain of side

90 mm. If this inhomogeneity is at (63 mm, 63 mm), we get a spiral wave that rotates periodically outside
the inhomogeneity; and wave-break occurs inside the inhomogeneity. Plots of the interbeat interval (IBI)
versus the beat number n from representative points outside and inside the inhomogeneity are shown in
Figs. 24 C and D, respectively; the corresponding power spectra are given in Figs. 24 E and F, respectively.

Furthermore, a spiral wave can get anchored to a Gsi inhomogeneity in the LRI model. For example,
if we place the inhomogeneity used in Fig. 24 at (49.5 mm, 58.5 mm), the spiral gets anchored to it as
depicted in Figs. 25 A and B via pseudocolor plots of V at 0.8 s and 1.2 s, respectively. Plots of the interbeat
interval (IBI) versus the beat number n from representative points outside and inside the inhomogeneity are
shown in Figs. 25 C and D, respectively; the corresponding power spectra are given in Figs. 25 E and F,
respectively. Since Gin

si = 0.07, we might expect chaotic behavior inside this inhomogeneity by comparison
with the homogeneous simulation of Fig. 26 D; the IBI plot of Fig. 25 C and the power spectrum of Fig. 25
E, which has a broad-band background below a few major peaks, confirm this expectation. Similarly, since
Gout

si = 0.02, we might expect periodic behavior outside this inhomogeneity; the IBI plot of Fig. 25 D and
the power spectrum of Fig. 25 F show that this is nearly the case: the rotation of the anchored spiral turns
out to be quasiperiodic (the major peaks in the power spectrum can be indexed as n1ω1 +n2ω2, with n1 and
n2 integers and the frequencies ω1 ≃ 6.5 Hz and ω2 ≃ 3.4 Hz, which are not related to each other by simple
rational numbers). As in the case of an ǫ1 inhomogeneity in the Panfilov model, a spiral wave can enter the
region spanned by a Gsi inhomogeneity, so the spatiotemporal patterns are richer than their analogs for a
conduction inhomogeneity. We have found similar spatiotemporal behaviors for spiral-wave dynamics in the
LRI model with inhomogeneities in Gk, but, given this similarity, we do not discuss these in detail here.

We can obtain stability diagrams for Gsi inhomogeneities just as we had for the case of conduction
inhomogeneities (cf. Figs. 17 and 18). A partial stability diagram for a Gsi inhomogeneity of side 2.25 cm in
a simulation domain of side 9 cm is given in Fig. 27; in this study we change the position of the inhomogeneity
in steps of lp = 0.45 cm. The final state of the system is indicated by a color code: red, blue, and green
squares denote, respectively, ST, RS, and Q states; in these stability diagrams we do not distinguish between
quasiperiodic and periodic behaviors. As in the case of conduction inhomogeneities, we see that the final
state of the system depends very sensitively on the position of the inhomogeneity.

Similarly we study ionic inhomogeneities in the RPB model by introducing inhomogeneities in the calcium
conductance Gsi. Here too we find that such Gsi inhomogeneities can lead to spiral-wave break up, anchoring
of the wave at the inhomogeneity, or elimination of all waves from the medium. If we use a square simulation
domain of side 11.52 cm with no inhomogeneity, Gsi = 0.064, and the initial condition described above, we
get spiral-wave turbulence. Now if we insert a square Gsi inhomogeneity, in most cases spiral break up and
turbulence continue; but, for certain positions of the inhomogeneity, we see different behaviors: For example,
when Gout

si = 0.064 and we set Gin
si = 0.02 in a square region of side 22.5 mm at (58.5 mm, 67.5 mm), spiral

waves move away from the medium and leave it in the quiescent state Q (Fig. 28); if instead Gout
si = 0.02

and Gin
si = 0.064 in a square region of the same size but placed at (58.5 mm, 58.5 mm), we obtain a single

rotating spiral (Fig. 29).
To investigate ionic inhomogeneities in the TNNP model we consider the calcium conductance GCaL that

governs the ionic current ICaL (see Sec. on “Results” of the main paper and Sec. 2 C). Figure 30 shows how
the action potential (AP) is modified at the single-cell level as we lower GCaL from 0.000175, the maximal
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Figure 21: (Color online) Inhomogeneities in the parameter ǫ1 in the Panfilov model can result in the
coexistence of different types of spatiotemporal behaviors in the same system. With ǫout

1 = 0.01 and ǫin
1 =

0.02 (see text) and a square inhomogeneity of side 40 mm, we obtain spatiotemporal chaos outside the
inhomogeneity but quasiperiodic behavior inside it if it is placed at (70 mm, 80 mm). The pseudocolor plots
in (A) and (B) are taken at t = 2200 ms and 3300 ms, respectively; the inter-beat interval (IBI), taken
from a point inside the inhomogeneity (C) and from outside it (D), along with corresponding power spectra
(E) and (F), obtained from time series of V from representative points. The discrete peaks in (E) can be
indexed as n1ω1 + n2ω2 with the incommensurate frequencies ω1 ≃ 11.23 Hz and ω2 ≃ 7.127 Hz; (F) shows
a broad-band background in the power spectrum.
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channel conductance, to 0.00011, then to 0.00005, and finally to 0 (i.e., ICaL channel block). Observe that,
as GCaL decreases, so does the APD; in addition, the shape of the AP also changes: the extent of the plateau
region decreases and, eventually, the shallow minimum after the initial upstroke is lost. We now study the
TNNP model in a square simulation domain of side 13.5 cm with the initial condition of Fig. 1 (A)(see
main text). As we decrease GCaL the spiral wave breaks up because the slope of the APD restitution curve
steepens and eventually exceeds 1: This break up is shown in the pseudocolor plots of V , at t = 3.2 s, of
Figs. 31 A, B, and C for GCaL = 0.000175, 0.00011, and 0.0005, respectively. In Figs. 31 D, E, and F we
show power spectra that have been obtained from time series of V recorded from the representative point
(90 mm, 90 mm) during spiral-wave activity for GCaL = 0.000175, 0.00011, and 0.00005, respectively. The
discrete lines in the power spectrum of Figs. 31 D can be indexed by one fundamental frequency ≃ 8.25 Hz
and integer multiples thereof; this is a signature of the periodic rotation of a single rotating spiral wave.
The multiple strong peaks and the broad-band background in the power spectra of Figs. 31 E and F are
indicative of quasiperiodic (with three fundamental frequencies ω1 ≃ 8.25 Hz, ω2 ≃ 9 Hz, and ω3 ≃ 9.5 Hz)
and chaotic states, the latter associated with the break up of spiral waves. We get similar results increase
the plateau Ca2+ conductance GpCa instead of changing the L-type Ca2+ conductance.

In some cases we observe that the inhomogeneity does not have a significant qualitative effect on the
dynamics of spiral waves; e.g., when the obstacle is at (45 mm, 45 mm), the pseudocolor plots of Fig. 32
show that the position of the spiral tip shifts towards bottom-left corner of the simulation domain but we
still have a state with a single rotating spiral wave whose arms pass through the inhomogeneity. The periodic
behaviors of time series V from a representative point in the simulation domain [Figs. 32 (E) and (H)] and
the constant value of the associated IBI plots [Fig. 32(F) and (I)] indicates clearly the existence of a single
rotating spiral wave in the medium; and the discrete lines in the power spectra [Figs. 32 (G) and (J)] give
additional evidence for this. Like conduction inhomogeneities, ionic inhomogeneity can also remove spirals
from the medium to leave the system in a quiescent state, e.g., when our GCaL ionic inhomogeneity is at
(45 mm, 22.5 mm) as shown in Fig. 33.

6 Elimination of spiral turbulence

In the main paper we have described the elimination of spiral-turbulence in the two-dimensional TNNP model
and the three-dimensional Panfilov model. Here we give similar results for the two-dimensional Panfilov,
LRI, and RPB models and additional results for the three-dimensional Panfilov model.

Figure 34 shows our results for the two-dimensional LRI model; here a control current of 20µA/cm2,
applied for 100 ms on a mesh that divides our square simulation domain of side 9 cm into 16 square cells
of side 2.25 cm each, suffices to control spiral turbulence. The pseudocolor plots of V in Fig. 34 give (A)
the initial spiral-turbulent state and its subsequent evolution after the initiation of the control pulse at (B)
100 ms, (C) 200 ms, and (D) 500 ms, after which all spiral turbulence disappears. Similar results from our
simulations of the two-dimensional RPB model are given in Fig. 35; here a control current of 20µA/cm2,
applied for 100 ms on a mesh that divides our square simulation domain of side 11.52 cm into 25 square cells
of side ≃ 2.25 cm each, suffices to control spiral turbulence. The pseudocolor plots of V in Fig. 35 give (A)
the initial spiral-turbulent state and its subsequent evolution after the initiation of the control pulse at (B)
50 ms, (C) 200 ms, and (D) 400 ms, after which all spiral turbulence disappears.
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Figure 22: (Color online) Inhomogeneities in the parameter ǫ1 in the Panfilov model can result in the
coexistence of different types of spatiotemporal behaviors in the same system, as in Fig. 21. With ǫout

1 = 0.03
and ǫin

1 = 0.01 (see text) and a square inhomogeneity of side 40 mm, we obtain spatiotemporal chaos inside
the inhomogeneity but periodic behavior inside it if it is placed at (140 mm, 140 mm). The pseudocolor
plots in (A) and (B) are at t = 2200 ms and 3300 ms, respectively.
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Figure 23: Superimposed plots of the action potentials in the LRI model illustrating their dependence on
the conductance Gsi for the slow inward calcium current. Four values of Gsi are chosen to illustrate that
the APD increases with Gsi.
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Figure 24: (Color online) Inhomogeneities in Gsi in the LRI model can result in the coexistence of different
types of spatiotemporal behaviors in the same system. With Gout

si = 0.02 and Gin
si = 0.07 in a square

inhomogeneity of side 22.5 mm and a square simulation domain of side L = 9 cm, we obtain spatiotemporal
chaos outside the inhomogeneity but periodic behavior inside it if it is placed at (63 mm, 63 mm). Pseudocolor
plots of V are shown in (A) and (B); from representative points outside and inside the inhomogeneity we
obtain (C) and (D), the plots of the IBI versus the beat number n, and the associated power spectra shown,
respectively, in (E) and (F).
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Figure 25: (Color online) A spiral wave anchoring to a Gsi inhomogeneity in the LRI model: Parameters are
the same as those in Fig. 24 but with Gin

si =0.07 and Gout
si = 0.02 and the ionic inhomogeneity at (49.5 mm,

58.5 mm). The pseudocolor plots of V shown in (A) and (B) are at t = 0.8s and 1.2 s, respectively. (C) and
(E) show the plot of the IBI versus the beat number n and the associated power spectrum calculated from
the time series of V from a representative point inside the inhomogeneity; and (D) and (F) are analogous
plots for a representative point outside the inhomogeneity.
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Figure 26: (Color online) The effects of changing Gsi in the LRI model: Pseudocolor plots of V (top panel),
which are obtained after t = 100 ms, and the associated power spectra (bottom panel) that we calculate from
a time series of V from a representative point; we show plots for Gsi = 0.02, 0.035, 0.05, and 0.07 (units as
in Sec. 2 A) [2]. Data for the time series in Fig. 26 are collected for 262144 iterations, i.e., 2621.44 ms. As
Gsi increases, a simple rotating spiral evolves to a state with broken spiral waves and spatiotemporal chaos;
the power spectra obtained from the time series of V , taken from a representative point in the simulation
domain, also mirror this evolution:
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Figure 27: (Color online) Detail of the stability diagram for the LRI model with the initial condition described
in the text: A square Gsi inhomogeneity of side 22.5 mm is placed at different positions in a square simulation
domain with side L = 90 mm. We have Gin

si =0.02 inside the inhomogeneity in a simulation domain where
Gout

si =0.07. For each one of these positions of the obstacle we determine the final state of the system; the
colors of the small squares, of side lp = 4.5 mm, indicate the final state of the system when the position of
the bottom-left corner of the obstacle coincides with that of the small square (red and blue denote ST and
Q, respectively).
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Figure 28: (Color online) Pseudocolor plots of V from our simulation of the RPB model in a square simulation
domain with side L = 11.52 cm and a square Gsi inhomogeneity of side 22.5 mm with Gout

si = 0.064 and
Gin

si = 0.02 placed at (58.5 mm, 67.5 mm). The plots in A, B, and C are at t = 0.4, 1.2, 2 s, respectively; the
spiral wave has been absorbed by the boundaries by t = 2 s (C).

Figure 29: (Color online) Pseudocolor plots of V in the RPB model with the parameters of Fig. 28 but with
Gin

si = 0.064 and Gout
si = 0.02. This results in a single rotating spiral anchored at the inhomogeneity as in

the plots of A, B, and C at times t = 0.2, 0.6, 1.0s, respectively.
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Figure 30: Effect of the GCaL conductance on the action potential in the TNNP model: (A) GCaL=0.000175
(maximal channel conductance); (B) GCaL=0.00011; (C) GCaL=0.00005; and (D) GCaL=0 (ICaL channel
block).
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Figure 31: (Color online) The effect of GCaL on spiral waves in the TNNP model shown via pseudocolor plots
of V at time t = 3.2 s and (A) GCaL = 0.000175, (B) GCaL = 0.00011, and (C) GCaL = 0.00005. Panels
(D), (E), and (F) show the corresponding power spectra of V (from a time series of 200000 iterations after
the removal of the initial 80000 iterations) from the representative point (90 mm, 90 mm) in the simulation
domain. These plots indicate that as GCaL decreases the system goes from a state with a single rotating
spiral wave to the spiral-turbulence state.
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Figure 32: (Color online) The effect of a square GCaL inhomogeneity, of side 33.75 mm in a square simulation
domain of side 135 mm, with Gout

CaL = 0.000175 (maximal value) and Gin
CaL = 0.00003, and placed at

(45 mm, 45 mm), on spiral-wave dynamics in the TNNP model: pseudocolor plots of V are shown at (A)
t = 0.16 s, (B) t = 0.32 s, (C) t = 1.2 s, and (D) 2 s. (E) the time series of V (from a sample of 50000 iterations
after the removal of the initial 200000 iterations) taken from the point (11.25 mm, 11.25 mm) that lies outside
the inhomogeneity. Associated plots of (F) the IBI versus the beat number n (a sample of 400000 iterations)
and (G) the power spectrum of V (from a sample of 200000 iterations after the removal of the initial 200000
iterations) indicating periodic temporal evolution [the peaks in the power spectrum can be indexed (see text)
in terms of one frequency (8.25 Hz) and its harmonics]. Figures (H), (I), and (J) are the analogs of (E), (F),
and (I), respectively, when data for V are recorded from the point (56.25 mm, 56.25 mm) that lies inside the
inhomogeneity; here too we have periodic temporal evolution with one underlying fundamental frequency
(8.25 Hz). In both (F) and (I) the IBI approaches a constant value (≃ 118 ms).
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Figure 33: (Color online)The analog of Fig. 32 but with the GCaL inhomogeneity at (45 mm, 22.5 mm). The
pseudocolor plots of V at (A) 0.32 s and (B) 1.2 s and the representative time series of V (from a sample of
40000 iterations) for (C) a point outside (11.25 mm, 11.25 mm) and (D) a point inside (56.25 mm, 33.75 mm)
the inhomogeneity show clearly that the spiral wave moves away from the simulation domain in this case.
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Figure 34: (Color online) Suppressing spiral turbulence in the LRI model: here a control current of 20
µA/cm2, applied for 100 ms on a mesh that divides our square simulation domain of side 9 cm into 16
square cells of side 2.25 cm each, suffices to control spiral turbulence. Pseudocolor plots of V : (A) the initial
spiral-turbulent state and its subsequent evolution after the initiation of the control pulse at (B) 100 ms,
(C) 200 ms, and (D) 500 ms, after which all spiral turbulence disappears.
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Figure 35: (Color online) Suppressing spiral turbulence in the RPB model: here a control current of 20
µA/cm2, applied for 100 ms on a mesh that divides our square simulation domain of side 11.52 cm into 25
square cells of side ≃ 2.25 cm each, suffices to control spiral turbulence. The pseudocolor plots of V give
(A) the initial spiral-turbulent state and its subsequent evolution after the initiation of the control pulse at
(B) 50 ms (C) 200 ms and (D) 400 ms, after which all spiral turbulence disappears.
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Figure 36: (Color online) The control of scroll-wave turbulence in our simulation of the 3D Panfilov model in
a domain of size 128×128×2 mm3: The initial state with scroll-wave turbulence is shown via an iso-surface
plot of V in (A); the control pulse of strength 0.48 is applied on a mesh with square cells, each of side 16 mm,
on the bottom face of the simulation domain for 748 ms; the evolution of this state after the initiation of the
control is depicted at (B) 440 ms, (C) 660 ms, and (D) 880 ms. By 880 ms the last part of the scroll wave is
moving out of the simulation domain and by 1100 ms the system is completely quiescent (not shown here).
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Figure 37: (Color online) Suppressing spiral turbulence in the 2D Panfilov model in the presence of an
inhomogeneity: the square simulation domain has side L = 20 cm, the obstacle is a square with side
l = 4 cm and is placed at (50 mm, 50 mm), and the simulation domain is covered by a mesh with K = 4,
i.e., the square unit cell of this mesh has a lattice constant ℓ = L/K = 5 cm. Had we not provided a control
stimulus on the mesh, the position of the inhomogeneity here is such that spiral turbulence would have been
obtained as in (A). We now apply the control pulse, of amplitude 0.8, for 770 ms. The pseudocolor plots of
V at 220 ms (B), 770 ms (C), and 1500 ms (D), after the initiation of the control pulse, show that all spiral
waves are removed from the system by this control scheme even though an inhomogeneity is present.

50



Figure 38: (Color online) Suppressing an anchored spiral in the 2D Panfilov model in the presence of an
inhomogeneity: This is as in Fig. 37, but now the obstacle is placed at (80 mm, 50 mm). (A) Pseudocolor
plot of V showing that initial spiral wave anchored to the obstacle. We now apply the control pulse, of
amplitude 0.8, for 770 ms. The pseudocolor plots of V at 220 ms (B), 770 ms (C), and 1500 ms (D), after
the initiation of the control pulse, show that all spiral waves are removed from the system by this control
scheme even though an inhomogeneity is present.

51



Figure 39: (Color online) Suppressing spiral turbulence in the 2D LRI model in the presence of an inho-
mogeneity: here a control current of 20 µA/cm2, applied for 100 ms on a mesh that divides our square
simulation domain of side 9 cm into 16 square cells of side 2.25 cm each, suffices to control spiral turbulence,
even though there is a square obstacle of side 2.25 cm placed at (63 mm, 54 mm). The pseudocolor plots of
V give (A) the initial state with an anchored spiral and its subsequent evolution after the initiation of the
control pulse at (B) 100 ms (C) 200 ms and (D) 500 ms, after which all spiral turbulence disappears.
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Figure 40: (Color online) Suppressing spiral turbulence in the 2D RPB model in the presence of an inhomo-
geneity: here a control current of 20 µA/cm2, applied for 100 ms on a mesh that divides our square simulation
domain of side 11.52 cm into 25 square cells of side ≃ 2.25 cm each, suffices to control spiral turbulence,
even though there is a square obstacle of side 2.25 cm placed at (45 mm, 36 mm). The pseudocolor plots
of V give (A) the initial state with spiral turbulence and its subsequent evolution after the initiation of the
control pulse at (B) 50 ms, (C) 200 ms, and (D) 400 ms, after which all spiral turbulence disappears.

In the three-dimensional Panfilov model, even if we apply a control pulse on a mesh on one of the L×L
faces of the L × L × Lz simulation domain, we can suppress broken scroll waves (the three-dimensional
analogs of broken spiral waves) in the entire medium, provided that Lz < 2 mm. We show in Fig. 36 the
successful application of such a control scheme in a 128 × 128 × 2 simulation domain via isosurfaces of the
transmembrane potential V . The initial state with spiral turbulence is shown in Fig. 36 A; the control pulse
of strength 0.48 is applied on a mesh with square cells, each of side 16 mm, on the bottom face of the
simulation domain for 748 ms; the evolution of this state after the initiation of the control is depicted at
(B) 440 ms, (C) 660 ms, and (D) 880 ms. By 880 ms the last part of the scroll wave is moving out of the
simulation domain and by 1100 ms the system is completely quiescent.

The control scheme proposed in Ref. [9] works even in the presence of an inhomogeneity. We first illustrate
this for the two-dimensional Panfilov model via the pseudocolor plots of V in Figs. 37 and 38; the square
simulation domain has side L = 20 cm, the obstacle is a square with side l = 4 cm, and the simulation
domain is covered by a mesh with K = 4, i.e., the square unit cell of this mesh has a lattice constant
ℓ = L/K = 5 cm. The control voltage that we apply on the mesh does does not create any target waves

53



Figure 41: (Color online) Suppressing an anchored spiral in the 2D TNNP model in the presence of an
inhomogeneity: A control pulse of amplitude 27.75 µA/cm2 is applied for t = 20 ms on a mesh as described
in the paper. The square obstacle is at (45 mm, 31.5 mm) and has side l = 22.5 mm. Without control the
spiral rotates around the obstacle as shown in Fig. 7 in the main paper. The pseudocolor plots of V in (A)
0 ms, (B) 24 ms, (C) 80 ms, and (D) 280 ms, after the intiation of the control, show the suppression of the
spiral wave.
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Figure 42: (Color online) Elimination of an anchored scroll wave in our 3D Panfilov-model simulation in
a 128 × 128 × 2 mm3 simulation domain in the presence of an obstacle of size 25 × 25 × 2 mm3 placed at
(60 mm, 60 mm): The scroll wave is anchored to the obstacle in this case as shown by the V iso-surface in
(A). We now apply a control pulse of strength 0.48 on a mesh with square cells, each of side 16 mm, on the
bottom face of the simulation domain for 748 ms; the evolution of the V iso-surfaces, after the initiation of
the control, is depicted at (B) 220 ms, (C) 440 ms, and (D) 880 ms, by which time scroll waves have left the
simulation domain and it is completely quiescent.
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Figure 43: (Color online) Unsuccessful attempt to control scroll-wave turbulence in our 3D Panfilov-model
simulation in a 128× 128× 4 mm3 simulation domain in the presence of an obstacle of size 25× 25× 4 mm3

placed at (70 mm, 60 mm): The scroll wave breaks up in this case as shown by the V iso-surface in (A). We
now apply control pulses of strength 0.48 on a mesh with square cells, each of side 16 mm, on the bottom
face of the simulation domain: instead of using a single long pulse, we use a series of 32 short pulses, each of
duration τw = 2 iterations (i.e., 0.22 ms), and separated by an interval of τip = 200 iterations. The evolution
of the V iso-surfaces, after the initiation of the control, is depicted at (B) 220 ms, (C) 440 ms, and (D) 880
ms; scroll waves turbulence persists even after 880 ms.
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Figure 44: (Color online) Unsuccessful attempt to control an anchored scroll wave in our 3D Panfilov-model
simulation in a 128× 128× 4 mm3 simulation domain in the presence of an obstacle of size 25× 25× 4 mm3

placed at (60 mm, 60 mm): The anchored scroll wave is shown by the V iso-surface in (A). We now apply
control pulses of strength 0.48 on a mesh with square cells, each of side 16 mm, on the bottom face of the
simulation domain: instead of using a single long pulse, we use a series of 32 short pulses, each of duration
τw = 2 iterations (i.e., 0.22 ms), and separated by an interval of τip = 200 iterations. The evolution of the
V iso-surfaces, after the initiation of the control, is depicted at (B) 220 ms, (C) 440 ms, and (D) 880 ms;
the anchored scroll wave persists even after 880 ms.
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that can interact with the obstacle to produce secondary spiral waves that can later break up and sustain
spiral turbulence; the small waves created by the control stimulus collapse inside a mesh unit cell soon after
they are born. Had we not provided a control stimulus on the mesh, the positions of the inhomogeneities in
Figs. 37 and 38 are such that spiral turbulence would have been obtained in the former (Fig. 37 A) and a
single rotating spiral wave, anchored at the obstacle (Figs. 38 A), in the latter. We now apply the control
pulse, of amplitude 0.8, for 770 ms. The pseudocolor plots of V , displayed in Figs. 37 and 38 at 220 ms (B),
770 ms (C), and 1500 ms (D) after the initiation of the control pulse, show that all spiral waves are removed
from the system by this control scheme even though an inhomogeneity is present.

From Ref. [9], the dimensioned value of the control pulse is 122.22 µA/ms2 times the dimensionless value.
So a control pulse of 0.8 would correspond to 97.78 µA/ms2.

The control scheme of Ref. [9] is also successful in eliminating spiral turbulence in the realistic LRI,
RPB, and TNNP models even in the presence of conduction inhomogeneities. We show this by illustrative
simulations below: Figure 39 shows our results for the two-dimensional LRI model; here a control current
of 20 µA/cm2, applied for 100 ms on a mesh that divides our square simulation domain of side 9 cm into 16
square cells of side 2.25 cm each, suffices to control spiral turbulence, even though there is a square obstacle
of side 2.25 cm at (63 mm, 54 mm). (In the absence of the control pulse, a single rotating spiral wave would
have been anchored to this obstacle.) The pseudocolor plots of V in Fig. 39 give (A) the initial state with
an anchored spiral and its subsequent evolution after the initiation of the control pulse at (B) 100 ms, (C)
200 ms, and (D) 500 ms, after which all spiral turbulence disappears. Similar results from our simulations
of the two-dimensional RPB model are given in Fig. 40; here a control current of 20 µA/cm2, applied for
100 ms on a mesh that divides our square simulation domain of side 11.52 cm into 25 square cells of side
≃ 2.25 cm each, suffices to control spiral turbulence, even though there is a square obstacle of side 2.25 cm
placed at (45 mm, 36 mm). (In the absence of the control pulse, a single rotating spiral wave would have
been anchored to this obstacle.) The pseudocolor plots of V in Fig. 40 give (A) the initial spiral-turbulent
state and its subsequent evolution after the initiation of the control pulse at (B) 50 ms, (C) 200 ms, and
(D) 400 ms, after which all spiral turbulence disappears. We also present results from our simulations of the
two-dimensional TNNP model in Fig. 41; here a control current of 27.75 µA/cm2, applied for 20 ms on a
mesh that divides our square simulation domain of side 13.5 cm into 16 square cells of side 3.375 cm each,
suffices to control spiral wave, even though there is a square obstacle of side 2.25 cm placed at (45 mm,
31.5 mm) in the simulation domain. (In the absence of the control pulse, a single rotating spiral wave would
have been anchored to this obstacle.) The pseudocolor plots of V in Figs. 41 give (A) the initial state and
its subsequent evolution after the initiation of the control pulse at (B) 24 ms, (C) 80 ms, and (D) 280 ms,
after which all spiral turbulence disappears.

We have shown above how the control scheme of Ref. [9] can be extended to three-dimensions in an
L × L × Lz simulation domain, if Lz < 2 mm. This scheme works even in the presence of an obstacle as is
illustrated for representative cases in Fig. 42 with an obstacle of size 25× 25× 2 placed at (70 mm, 60 mm);
in the absence of control pulses a single scroll wave is anchored to the obstacle. We now apply a control
pulse of strength 0.48 on a mesh with square cells, each of side 16 mm, on the bottom face of the simulation
domain for 748 ms; the evolution of the states of the system after the initiation of the control are depicted at
(B) 220 ms, (C) 440 ms, and (D) 880 ms in both Fig. 42. By 880 ms the scroll waves have left the simulation
domain and it is completely quiescent.

When Lz > 2 mm, the control scheme described in the previous paragraph fails just as its counterpart
did in the absence of an inhomogeneity. As in the homogeneous case we have tried to use a control mesh
on one face of the simulation domain, but, instead of using a single long pulse, we have used a series of
short pulses, each of duration τw and separated by an interval τip, to control scroll-wave turbulence in the
presence of an obstacle. For the three-dimensional Panfilov model we have, in particular, tried this control
scheme in a 128 × 128 × 4 mm3 simulation domain with an obstacle of size 25 × 25 × 4 mm3 placed such
that on the bottom face one of its corners is at (70 mm, 60 mm); in the absence of control pulses this yields
spiral turbulence. We now use a control mesh of square cells, each of side 16 mm, on the bottom face of the
domain, set τw = 2 iterations (i.e., 0.22 ms), τip = 200 iterations (22 ms), and employ a series of 32 pulses
each with strength 0.48. We see from the isosurfaces of V in Fig. 43 that this turbulence persists even when
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we apply the sequence of control pulses that eliminated it in the absence of the obstacle. Similarly, Fig. 44
illustrates the inadequacy of this control scheme with the same obstacle placed such that on the bottom face
one of its corners is at (60 mm, 60 mm); in the absence of control this leads to a scroll wave anchored at the
obstacle; this scroll wave persists even when we apply the control pulses.
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