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Supporting Information 

Methods S1 

Two-phase strategy for detecting within-gene recombination [1] 

Phase I: Screening for instances of recombination 

We used three quick and simple statistical tests to screen the 1,462 gene-sequence sets for 

instances of recombination: (a) maximal chi-squared (MaxChi) [2], (b) neighbor similarity score 

(NSS) [3], and (c) pairwise homoplasy index (PHI) [4]. These three tests measure the 

significance of phylogenetic discrepancy across sites in an alignment, and are implemented in 

PhiPack [4].  

(a) Maximal chi-squared test (MaxChi) [2] 

Within each sequence set, a sliding window is applied on each possible pair of sequences. The 

chi-squared statistic is computed to compare the proportion of identical sites within the left half-

window with the proportion of identical sites within the right half-window. Recombination is 

likely when there is a significant discrepancy between the two proportions. Therefore, the 

maximal chi-squared over all sequence pairs is inferred as evidence of recombination. The fixed 

window size used in the test was set to equal two-thirds of the number of polymorphic sites in 

the sequences, as recommended in previous studies [5,6].  

(b) Neighbor similarity score (NSS) [3] 

Recombination is likely to have occurred when the aligned sequence set contains a cluster of 

topology-informative sites (columns) that indicate a phylogeny topologically incongruent with 

the phylogeny indicated by the other sites within that alignment. The NSS statistic is a measure 
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of the extent and the significance of such clustering. Intuitively, when pairwise comparisons of 

all informative sites are laid out in a compatibility matrix and compatibility and incompatibility 

of sites are color-coded, the NSS is simply the fraction of adjacent squares of the same color in 

the matrix.  

(c) Pairwise homoplasy index (PHI) [4] 

In sequence comparison, homoplasy is an observation of same or similar character states that do 

not share a common ancestral origin. A recombination event would create a homoplasious region 

in the sequence. Similar to NSS, PHI is a compatibility-based statistic that compares topology-

informative sites in a pairwise matrix. The main difference between the two statistics is that NSS 

measures the clustering of incompatible sites, whereas PHI measures the compatibility between 

closely linked sites using a refined incompatibility matrix and a refined incompatibility score.  

The significance for each of these three statistics was assessed by randomly permuting the 

columns of the alignment (for MaxChi), or parsimoniously informative sites in the alignment (for 

NSS and PHI), 1,000 times. We earlier found that biases exist in each of these three tests when 

detecting reciprocal and non-reciprocal recombination events, and therefore one should not rely 

on a single test when, as is usually the case, one does not know a priori whether an event is 

reciprocal or non-reciprocal [1]. Here, we accepted that there exists evidence of a recombination 

event when two of the three statistics had p-values ≤ 0.10. We find that our approach has a 96% 

specificity in detecting recombinants at the p-value threshold of 0.10 (unpublished). Given the 

computational efficiency of implementations of these tests, there is no great burden associated 

with computing p-values for all three, even on thousands of sequence sets. 
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Phase II: Identification of recombination breakpoints 

Once recombination was detected in a gene sequence set, we used a rigorous Bayesian 

phylogenetic approach, DualBrothers [7], to identify the corresponding recombination 

breakpoints. We applied a modified version of the program to infer the change-points in 

phylogenetic signal across the alignment. The Bayesian approach was found to show high 

accuracy in identifying recombination breakpoints, although the approach itself is 

computationally expensive in time and memory [8]. 

DualBrothers is an implementation of reversible-jump Markov chain Monte Carlo (MCMC) to 

perform inference under a dual multiple change-point model, in which change-points in tree 

topologies and change-points in evolutionary rates across sites within a sequence set are modeled 

independently [7]. A prior distribution on the number of change-points creates a strong 

preference for fewer change-points, which corresponds to the a priori assumption that 

recombination and changes in substitution rate are a rare occurrence. For a given aligned gene 

sequence set, MCMC was implemented in DualBrothers to sample the joint posterior distribution 

of phylogenetic trees relating the sequences, the change-points in phylogeny along the alignment, 

and the change-points in the substitution rate along the alignment. Trees are assumed to be 

unrooted with exponentially distributed branch lengths. The mean value for the exponential is 

taken to be the substitution rate, which itself is Poisson distributed. The ratio of nucleotide 

transititon to transversion (parameter kappa) was also sampled in DualBrothers, emulating an 

HKY model of nucleotide substitution. 

A sequence set of size n has (2n-5)!! possible unrooted tree topologies relating the taxa. For 

many of the sequence sets in our dataset the value of n is large, creating an intractable search 
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space of possible topologies for the DualBrothers MCMC sampler. At large n, typically a 

relatively small number of topologies dominate the posterior distribution and many topologies 

are extremely unlikely given the data. DualBrothers proposes new updates of topology 

uniformly-at-random from the set of all possible tree topologies, so unlikely topologies can be 

proposed, with the consequence that convergence and mixing of the MCMC chain becomes 

inordinately slow. To concentrate the sampling efforts of DualBrothers on tree topologies likely 

to be well-represented in the joint posterior distribution, we implemented a preprocessing 

method suggested by the authors [7] to identify candidate topologies and restrict the search 

space. We applied MRBAYES [9] version 3.1.2 to sliding windows for each of the sequence 

alignment. The parameters for MCMC implementation in MRBAYES were set at chain length = 

2,500,000 generations, and burn-in = 500,000 generations. For the present work we used a 

window size of 100 nucleotides and a window-shift value of 25 nucleotides. On an alignment of 

1,000 columns, for example, we would run MRBAYES on 36
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windows. 

From each window we saved the top 90% most-likely trees inferred by MRBAYES (at 90% 

Bayesian Credible Interval) and pooled the topologies from each window in the sequence set into 

a list of trees. For windows with little nucleotide diversity, the posterior distribution of 

topologies can be extremely diffuse because little information exists to resolve branching order 

for certain taxa. In such scenarios, we further sub-sampled the 90% BCI to arrive at a set of 

1,000 candidate trees, with the rationale that the sub-sampled set of 1,000 trees will contain 

representatives of the major splits present in the posterior, along with arbitrary resolutions of 

branching order in unresolved portions of the tree. 
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Finally, we applied DualBrothers to sample recombination breakpoints, restricting the search 

space to a maximum of 1,000 candidate topologies. MCMC chains were run for 2,500,000 

generations with burn-in at 500,000 generations. Markov chain convergence was assessed for 15 

arbitrarily chosen gene sequence sets (of various sizes) by running four additional chains and 

computing the standard deviation of split frequencies as implemented in MRBAYES [9], 

although on a site-by-site basis instead of on the alignment as a whole. Convergence of Markov 

chain was not observed in sequence sets of size > 20, even with longer chain runs at 5,000,000 

generations. These sets were therefore excluded from the analysis. 

In DualBrothers, the marginal posterior probability (mPP) that each position in the alignment is a 

change-of-point (COP) was calculated. These mPPs, when plotted against positions (columns) in 

the alignment, form the COP profile plot, on which the identification of breakpoints was based as 

illustrated in Figure S1. A sharp peak in the COP profile corresponding to a change of tree 

topology in the sequence set was identified as the breakpoint region. To define the exact location 

of the breakpoint within a peak, the algorithm searches to the left and right of the peak until the 

cumulative COP mPPs ≈ 1. This conditional region was treated as an MCMC sample from a 

discrete-value distribution. A sample distribution was obtained by multiplying the mPPs with the 

number of MCMC samples in DualBrothers run. The breakpoint location was identified as the 

median of the sample distribution thus constructed, and the 95% Bayesian Confidence Interval 

was identified between quantiles 0.025 and 0.975. 

Annotation of protein domains 

The number of gene sets, annotated protein domains and the inferred recombination breakpoints 

within the gene sets are shown in Table S1.  
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Among these 1,462 gene sets, average sequence identity is 0.5647 ± 0.1130 %. Average 

sequence identity is 0.5335 ± 0.0089 % in the 81 gene sets with domain annotation, and 0.5666 ± 

0.1140 % in the 1,381 without domain annotation. A Kolmogorov-Smirnov test comparing the 

latter two distributions yields D = 0.1632 and p = 0.034, indicating that the sequence identity 

levels are only slightly different, but that this difference may be significant. Note that the identity 

is lower, on average, in the sets with domain annotation. 

Across the dataset, the average sequence identity within domain-encoding gene regions (domons) 

is 0.52 (minimum 0.36, maximum 0.72, standard deviation 0.085), whereas the average sequence 

identity within non-domain-encoding gene regions (nomons) is 0.47 (minimum 0.22, maximum 

0.98, standard deviation 0.12) (Figure S2A). Application of the Kolmogorov-Smirnov test 

between the two distributions yielded D = 0.16 and p = 0.008, suggesting that sequence identity 

levels differ only slightly, although probably significantly, between domon and nomon regions.  

Figure S2B shows the distribution of the ratio of nucleotide percent identities within-domon 

versus in nomon regions (D/N ratio). For most of these sequences, the percent identity within 

domons is essentially indistinguishable from that in the nomon regions (D/N ≈ 1), although we 

found a few exceptions for which D/N > 2. The DualBrothers algorithm, like most phylogeny-

based approaches, may be assumed to perform more accurately in regions of moderate sequence 

identity than where identity is extremely high or low. Our results allow us to exclude the 

possibility that, in general, the preferential association of recombination breakpoints we observe 

in domon regions is an artifact related to greater sequence identity, although this possibility 

cannot be excluded for a few datasets individually. 
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Figure S3 shows the distribution of the lengths of domain regions as annotated in the whole 

dataset using SCOP. Almost half of the domain regions are of lengths 101-150 amino acid 

residues. As mean domain length increases relative to the length of a sequence, one can imagine 

that recombination breakpoints are more likely found within-domain than in the inter-domain 

regions (ρ < 1), potentially introducing a bias in the inference of recombination in relation to 

protein domains.  

We examined the relationship between length of annotated domain and inter-domain regions (in 

amino acid residues) in the sequences in which recombination was inferred. We found that most 

inter-domain regions are short irrespective of whether the domain-encoding regions are long or 

short, as depicted by the concentration of data points (pink and red cells) in which lengths of 

inter-domain regions are short (between 14 and 40 residues) in Figure S4. In the cases of 

sequences with long domains, the chance of a breakpoint being found outside a domain (ρ ≈ 1) is 

low because the length of inter-domain region in these sequences is short. Therefore our 

inference of breakpoint locations with respect to domain structure might be biased by the lengths 

of annotated domains in the sequences.  

Relating breakpoint locations to corresponding domains 

We developed a normalized breakpoint-to-midpoint distance statistic (ρ, as shown in Figure 1B 

in the main text). A breakpoint with ρ ≈ 0 is located closer to the midpoint (center) of the 

corresponding domain than a breakpoint with ρ ≈ 1. A breakpoint with ρ = 1 is located either at 

the boundary or outside the corresponding domain. Table S2 shows the list of distinctive protein 

domains and the respective ρ values of the associated breakpoints. A greater number of domain 
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types will need to be sampled in order to test the hypothesis of the tendency of certain domain 

types to be conserved or disrupted in the event of recombination. 

The relationship between ρ and the corresponding domain length (L) was assessed by a heat map 

of the total data points. For each border point of the columns (an arbitrarily pre-defined domain 

length based on the categorization in the heat map), we performed a Kolmogorov-Smirnov test to 

examine the significance of difference between the distributions of ρ on the left and on the right 

of that point. Domain length 239 was found to be the separation point at which the two 

distributions show the most-significant difference (D = 0.38, p = 10-17) and on this basis we 

divided the breakpoints into two distinct groups: those with corresponding domain length ≤ 239, 

and those with corresponding domain lengths > 239.  
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