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Theoretical derivation of observed genotype frequencies in terms of r, p1 and p2 

Each observed genotype frequency is a sum of all possible cases that exhibit that particular genotype. For 

example, AAP̂  was computed by summing cases AA/AA, AA/A, AA/-, where the left side of the slash 

represents the true genotype at the original site and the right side meaning the ectopic site. As an example, the 

probability of case AA/A was computed as multiplication of three independent events – having AA at the first 

site, having A at the second site and having two copies in one chromosome and one copy in the other 

chromosome, which can be expressed as p1
2, p2 and 2r(1-r), respectively. 

 

Comutation of conditional probabilities P(CNV|HWD) and P(HWD|CNV) 

P(CNV|HWD) and P(HWD|CNV) were computed based on internal allele frequency paramters p1, p2 and r, 

and observed allele frequency( Ap̂ ), significance level for HWD testing (α), sample size (n) and genotyping 

error (eg). As mentioned in the main text, r, p1, p2 refers to true allele frequencies of CNV, SNP at the original 

site (L1) and SNP at the ectopic site (L2). 
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The numerator and denominator terms were decomposed into a sum of different joint probabilities. 
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either )1,0( , { }0  or { }1 . The distributions of r, p1 and p2 have a probability mass at 0 or 1 and probability 

density at (0,1). 

 

In order to compute the probabilities unconditional to r, p1 and p2, integration over r, p1 or p2 is involved in 

cases of rS =(0,1),
1pS =(0,1) or 

2pS =(0,1) and the integrals were summed for cases where r, p1 or p2 is 

either 0 or 1. The integrations were performed by sampling randomly from the prior distributions. The 

computation of joint probabilities ),|ˆ,,,( 21 αnppprP A  and ),|&ˆ,,,( 21 αnHWDppprP A  for a 

given point (r, p1, p2) involve computation of ),,,,|ˆ( 21 αnpprpP A  and 

),,,,|&ˆ( 21 αnpprHWDpP A . The functions ),,,,|ˆ( 21 αnpprpP A  and 



),,,,|&ˆ( 21 αnpprHWDpP A  were computed as described below. 

 

1. Computation of ),,,,|ˆ( 21 αnpprpP A  and ),,,,|&ˆ( 21 αnpprHWDpP A  

Let’s denote by xAA, xAC, xCC, the number of individuals with genotype AA, AC and CC, respectively, out of 

the n samples. For each given Ap̂ , a set of possible values of (xAA, xAC, xCC) can be determined. The 

probability distribution of all possible genotype frequencies (xAA, xAC, xCC) is trinomial, which can be 

expressed as an analytical function of p1, p2, r and n. Thus, given the probability mass function G of genotype 

frequencies, the event Ap̂  or Ap̂ &HWD is independent of p1, p2, r and n. G is defined as: 
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With genotyping error rate eg, ACgAA Perprpp ++−=′ 2
2

2
1 )1( , 

ACgCC Perppp +−−=′ 2
2

2
1 )1()1( , and ACgAC Pep )21( −=′  were used instead of AAp , CCp  

and ACp , respectively. Four different values of eg, (0, 0.01, 0.05, 0.25) were tried as mentioned above.  

For implementation, all possible values of ),,( CCACAA xxx  were deducted for a given value of Ap̂ . 

Suppose ACAA xxT += 2 . Since 
n

xx
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= , npT Aˆ2= . Then, T was rounded-off to an integer. 

Possible AAx  values range from 0 to 
2
T  if T is even, or from 0 to 

2
1−T . AAAC xTx 2−= , and 



Txnx AACC −+= . For each possible combination of ),,( CCACAA xxx , ),,,|,,( 21 npprxxxG CCACAA  

were computed and HWD testing was performed. HWD testing variable w=1 if ),,( CCACAA xxx  is 

significantly deviated from HWE in the χ2 test, 0 if not. 

Now the conditional probabilities are expressed as: 
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where 
2
Tt =  if T is even, or 

2
1−

=
Tt  if T is odd. 

Chi-square tests were performed without continuity correction. In small-sample cases where χ2 test is 

unavailable (eg. one of the cells has a value 0), w was set equivalent to HWD. For comparison and to provide 

evaluation of robustness, we also ran the same program with w=1 for those where chi-square test is not 

available for n=1000, α=0.01. The results were virtually identical to the results with the w=0 setting (data not 

shown). An exact test[1] would be more appropriate in these cases, but for computational homogeneity and 

convenience chi-square tests were used for all cases. 

 

2. Prior distributions 

Three prior functions are defined as follows for r, p1 and p2: )(rrπ , ),( 2121
ppppπ  and )( 11

ppπ : 
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βκβκ rrrbeta , where Γ  is a gamma function. KCNV, KRegular and 

KSD represent the proportion of CNV, regular and SD regions in the genome, respectively. They were set to 

14%, 81% and 5% each, which are roughly consistent with previous estimates (See introduction). For r=0 or 1, 

)(rrπ  has probability mass, that corresponds to the percentage of normal and SD regions in the genome. 

Otherwise, )(rrπ  has probability density with priority towards r<0.05, in consistence to the previous 

knowledge. The beta function parameters κ and β were set as above, so that the mean of r is 0.05. For 

comparison, a uniform prior was also tried instead of the beta function. 

 

2) ),( 2121
ppppπ  and )( 11

ppπ  

A joint prior distribution for p1 and p2 was defined using the rate of a single site becoming polymorphic, ρ. In 

presence of two duplicate sites, the probability of both sites being polymorphic was assumed to be ρ2, because 

it can be considered as two independent SNP-creating events. The case where one of the sites is monomorphic 

and the other is polymorphic can be regarded as a single event, and its probability is ρ. The case where both 

sites are monomorphic can also be regarded as a single event, although the evolutionary path must be different. 

Considering these factors, we modeled our prior of p1 and p2 as follows: 
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When p1 or p2 is 0 or 1, the prior distribution represents a probability mass, whereas when p1 or p2 is in 

between 0 and 1, it represents a uniform probability density. ρ =1/300 was used, to reflect the current 

estimate of SNP density (10 millions)[2]. 

 

3. Decomposition of integration according to probability mass and density regions. 

Since our priors are hierarchical mixtures of mass and density, we divided the cases accordingly and 

performed integration independently for each. The following table lists the cases and corresponding integral 

forms. The joint probability ),|&&ˆ&(
21 21 αnSpSppSrP ppAr ∈∈∈  was computed likewise. In 

the remaining 12 cases (r=0 & p1=0, r=0 & p1=1, p1=p2=0, p1=p2=1), the likelihood is 0 because they result in 



observed monomorphism, when there is no experimental errors or when genotyping errors occur only in the 

hetero  homo direction.  
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Table S1. Joint probabilities for different cases of 
1pS  and 

2pS . 
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