S1. Strategies of different learning rules
Learning rules following the matching strategy
Several well-known learning rules exhibit matching behavior when the decision system has no state variable and each choice is independent of past choices. These learning algorithms generally obey the matching strategy. The stochastic gradient ascent designed to solve the Markov decision process[1,23] in the reinforcement learning theory presupposes that the value of expected return never changes. Both “actor critic[1]” and “direct actor[23]” are derived from the stochastic gradient ascent in the Markov decision process and exhibit matching behavior[20]. “Melioration[16]”, “local matching[9]” and “covariance rule[19]” are designed to achieve the matching law, hence providing examples of the matching strategy. Below, we show these facts explicitly.
For this purpose, we introduce a stochastic gradient ascent rule that gives a method to achieve the stationary condition given by Eq. 3 in the text: 
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 is a positive constant. Then, the matching strategy implies 
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In the case of two options (
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), we may describe the choice probabilities as 
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 from Eq. (S1). This rule increases the choice probability of the option that has a larger expectation value of return, and gives an implementation of “melioration[16]”.

“Local matching[9]” estimates the average reward obtained at each option within a finite past. It defines the choice probability as the fraction of the total reward: 
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, we can derive the local matching from Eq. (S1) by setting 
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We can derive direct actor[23] and actor-critic by describing the choice probabilities as 
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. Then, we can rewrite the average synaptic change as 
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 in the stochastic gradient ascent. Noting that 
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, we obtain the “direct actor”  
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, and introducing a new variable 
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, we can obtain the updating rule of an actor-critic system without state variables 
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Loewenstein and Seung[19] recently proposed a class of updating rules, called “covariance rule”, that lead to the matching law. They provided the following examples of the covariance rule: 
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. Here, 
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 represents some measure for pre- or post-synaptic activities at the j-th synapse. More precisely, 
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 should be correlated with the current choice, but not explicitly with the current reward. In all of the three types, the long-term average of the weight change is given as 
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. If we set 
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, the first and second examples of the covariance rule coincides with the actor-critic and direct actor, respectively. All the decision systems used here had no state variable.

Learning rules following the maximizing strategy
Examples of the maximizing strategy can be seen in the stochastic gradient ascent to solve the partially observable Markov decision process. In particular, it was recently claimed that covariance learning can maximize reward in a special case, that is, if the covariance between the current reward and an infinite sum of all past neural activities vanishes[19], 
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The matching behavior is achieved when only the first term of the infinite sum vanishes. This claim corresponds to the relationship between Eqs. 2 and 3 in the text if the choice probability function is described as 
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, since the stationary condition of the matching strategy (Eq. 3 in the text) is written as 
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 generally expresses decision-related neural activity 
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Yet another strategy for reward maximization

Q-learning[1] belongs to another class of the reinforcement learning algorithms that does not show matching in steady behavior. While the actor-critic system estimates the values of states, Q-learning estimates the expected returns for the individual options in each state, called “action values”, to determine choice probabilities. Several variations exist in the evaluation of future return (“SARSA”, etc.), and Q-learning without state variables is called an “indirect actor” in Dayan and Abbott[23]. If state variables are absent, Q-learning, SARSA and the indirect actor give the same algorithm: 
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. This algorithm ensures that 
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 in the steady state, so the choice probabilities are described by the average returns as 
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. Since the choice probability depends on the value of a parameter (i.e., 
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), Q-learning cannot be reformulated in the stochastic gradient ascent and does not always exhibit the matching law. 

In the practical use of Q-learning and other action-value-based learning rules, 
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 is set to a small value during the estimation of action values, and the greedy limit 
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 is taken after this exploration. This operation ensures a maximum reward when state variables are correctly defined[24]. Thus, Q-learning gives another strategy to achieve the optimal choice behavior.
PAGE  
3

_1269861579.unknown

_1269873683.unknown

_1271235837.unknown

_1271236034.unknown

_1271236071.unknown

_1271236070.unknown

_1271235838.unknown

_1271235930.unknown

_1270128567.unknown

_1270975739.unknown

_1270975923.unknown

_1271235836.unknown

_1270975866.unknown

_1270128568.unknown

_1270128566.unknown

_1269873398.unknown

_1269873583.unknown

_1269873635.unknown

_1269873682.unknown

_1269873515.unknown

_1269863032.unknown

_1269863154.unknown

_1269863155.unknown

_1269863033.unknown

_1269861991.unknown

_1269862332.unknown

_1269861593.unknown

_1251546107.unknown

_1254428943.unknown

_1269858039.unknown

_1269859619.unknown

_1269695222.unknown

_1254322885.unknown

_1254422348.unknown

_1251623176.unknown

_1252151623.unknown

_1251628279.unknown

_1251546119.unknown

_1251539763.unknown

_1251539856.unknown

_1251546037.unknown

_1251541952.unknown

_1251539835.unknown

_1251478521.unknown

_1251536911.unknown

_1251536992.unknown

_1251487945.unknown

_1251480738.unknown

_1241240582.unknown

_1241335937.unknown

_1241622847.unknown

_1232611694.unknown

_1240656757.unknown

