
Quantified Maximum Entropy

MemSys5

Users’ Manual

This manual describes the MemSys5 package of Fortran 77 subrou-
tines designed to find and use maximum entropy reconstructions of
images, power spectra, and other such additive distributions from
arbitrary sets of data.

S.F. Gull and J. Skilling
Maximum Entropy Data Consultants Ltd.
South Hill
42 Southgate Street
Bury St. Edmunds
Suffolk, IP33 2AZ, U.K.

Version 1.2
September 8, 1999
Copyright c© MEDC 1990—1999

Hidden space Visible space Data space

ICF -

TRICF�

OPUS -

TROPUS�

Truth f

OPUS -

Data D

Entropy >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> MEM5

Multipliers w

TRICF TROPUS�

Pr(h)

ICF -

Inference Pr(f)

MOVIE5 <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<< Multipliers w

Hidden sample h

ICF -

Visible sample f

Visible mask

TRICF�

Hidden mask

MASK5 <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<< Multipliers w

-

Quantification

Contents

Introduction 7

I Theory 9

1 Probability theory and Bayes’ Theorem 11
1.1 Bayesian calculus for scientific inference . 11
1.2 Entropic prior for a distribution . 13
1.3 Gaussian likelihood . 15

2 Classic maximum entropy 17
2.1 Classic maximum entropy . 17
2.2 Inferences about the reconstruction . 24
2.3 Basic iterative algorithm . 26
2.4 The intrinsic correlation function . 29
2.5 Predicted data . 29
2.6 Inferences about the noise level and other variables 30

3 Extensions and generalisations 33
3.1 Positive/negative distributions . 33
3.2 Fermi–Dirac distributions . 34
3.3 Quadratic entropy . 34
3.4 Fixed total . 34

4 Algorithmic details 35
4.1 Iterative algorithm in hidden space . 35
4.2 Vector coding . 36
4.3 Data-space algorithm . 38

II Practice 41

5 The MemSys5 software package 43

6 Storage areas 45
6.1 Area structure . 45
6.2 Initialisation: MEINIT . 47
6.3 Area handling and overlaying . 47

3

4 CONTENTS

7 The vector library 49
7.1 Area access routines VFETCH and VSTORE . 50
7.2 Disc-handling routines UFETCH and USTORE . 52
7.3 Arithmetical vector routines . 53

8 Transform routines 55
8.1 Transform subroutines OPUS, TROPUS, and UMEMX . 55
8.2 Intrinsic correlation function routines ICF and TRICF 57

9 Diagnostics and utilities 59
9.1 Diagnostics routine UINFO . 59
9.2 Transform checking subroutine MEMTRQ . 60
9.3 Save and restore utility: MESAVE and MEREST . 61
9.4 Error messages . 61
9.5 Miscellaneous subroutines . 63

10 Specifications of the major subroutines 65
10.1 MEMSET arguments . 65
10.2 MEM5 arguments . 66
10.3 MOVIE5 arguments . 69
10.4 MASK5 arguments . 71

11 Example of simple use 73
11.1 Example of classic maximum entropy . 75
11.2 Post script . 84

12 Helpful hints 87
12.1 Multiple maxima of α . 87
12.2 Tolerance variable UTOL . 87
12.3 Internal iteration limits . 88
12.4 Arithmetic accuracy . 88
12.5 Combination of transforms . 88

A User-supplied routines 91

B Historic maximum entropy 93

C Reserved names 95

D Changes from MemSys2 to MemSys3 97

E Changes from MemSys3 to MemSys5 99

List of Figures

2.1 Maximum entropy trajectory. 20
2.2 Maximum entropy cloud. 21
2.3 Maximum entropy cloud. 21
2.4 Maximum entropy cloud. 22
2.5 Maximum entropy cloud. 22
2.6 Maximum entropy cloud. 23
2.7 Maximum entropy cloud. 23
2.8 Integrated maximum entropy cloud. 24

11.1 Noisy blurred data (gauss.dat). 74
11.2 Classic MaxEnt reconstruction f̂ . 80
11.3 Classic MaxEnt reconstruction ĥ . 80
11.4 Sample from posterior cloud . 81
11.5 Sample from posterior cloud . 81
11.6 Sample from posterior cloud . 82
11.7 Sample from posterior cloud . 82
11.8 The true simulation f . 84

B.1 Historic maximum entropy. 94

5

List of Tables

6.1 MemSys5 area usage. 46

9.1 Coding of INFO calls with MLEVEL. 59

11.1 MASK5 quantification results . 83
11.2 Comparison of estimated and true values for the simulation of Figure 11.2. 85

6

Introduction

The origins of maximum entropy analysis can be traced back to the 18th century, to the works
of Bernoulli and Laplace, and brought to our own day through the works of Jeffreys and Jaynes.
Today, it is widely recognised as a fundamental tool of scientific inference. The MemSys5 package
is the most advanced software available for maximum entropy analysis, and has been developed
by Maximum Entropy Data Consultants Ltd. as a result of more than 10 years’ research and
development. Over this period, extensive experience has been gained in the application of these
techniques to practical problems in commercial, academic, and government organisations around
the world.

Problems involving the reconstruction of distributions occur in many branches of science and
engineering, and many techniques have been developed over the years to try to deal with them.
One of the reasons for the enormous success of maximum entropy in an ever-increasing number of
disciplines is that it is not an ad hoc technique, but is founded instead on the bedrock of probability
theory. Thus the principles involved are universally applicable, and, if properly applied, allow the
most efficient possible use of the data in the inference process.

One of the major benefits of an analysis based on probability theory is that it provides a
mechanism for handling ‘noisy’ and sparse data in an entirely rational and consistent manner. The
result of the analysis is not just a single ‘best estimate’ of the quantity of interest, but includes
a precise statement of the confidence which can be placed in it. The MemSys5 package provides
two tools for investigating and quantifying the accuracy of these estimates. Firstly, it provides a
general-purpose routine which can be used to give a dynamic, visual illustration of the way in which
the uncertainties in the data allow uncertainties in the results. Secondly, it provides a routine for
quantifying how accurately specific features of the reconstructed distributions are determined. The
MemSys5 package is written in Fortran 77, but a machine-translated version of the source code
in C can be supplied instead.

This manual describes the theory and practice of maximum entropy data analysis as imple-
mented in the MemSys5 package. Part I summarises the derivation of the maximum entropy for-
malism from the basic laws of probability theory, and describes the algorithms used in the package.
Part II contains a detailed description of the software itself. The MemSys5 package is a maximum
entropy ‘inference engine’; to apply this ‘engine’ to a specific problem, a set of interface routines is
required to model the relationship between the data and the distribution of interest. The specifi-
cations for these interface routines are given, together with examples. The package is distributed
with a complete, working “TOY” deconvolution program as a simple illustration of its use.

7

Part I

Theory

9

Chapter 1

Probability theory and Bayes’
Theorem

1.1 Bayesian calculus for scientific inference

Bayesian probability calculus is the natural, and indeed the only, language for drawing inferences in
a consistent fashion. Each of the hypotheses A, B, C, . . . which might be assessed in an experiment
corresponds to a logical proposition of the form “X is true”, where X stands for any of A, B, C,
It follows that scientific data analysis is a special application of our methods for dealing with logical
propositions.

Let us suppose that there is a general calculus for dealing with such propositions. If there
is, then obviously it must apply in special cases. Cox (1946) proved that any calculus which is
consistent with the ordinary rules of Boolean algebra obeyed by propositions must be equivalent
to Bayesian probability theory. Each proposition P carries a numerical code Pr(P), obeying

Pr(P,Q) = Pr(P) Pr(Q | P)

Pr(P) + Pr(P) = 1

where “ , ” means “and”, “ | ” means “given”, and “ ” means “not”. All such codes lie between 0
and 1, with the particular propositions “true” and “false” having the extreme values

Pr(false) = 0, Pr(true) = 1 .

These are the standard rules of probability calculus, and accordingly the codes are called “prob-
abilities”. The only freedom allowed is to rescale the Bayesian probabilities by some arbitrary
monotonic function, as percentages are obtained by multiplying by 100. Whatever codes were first
assigned to the propositions, these could be mapped uniquely back to the Bayesian probability
values, so that we may adopt this standard convention without any loss of generality.

This definition of “probability” is, of course, consistent with the commonly used definition as
a limiting frequency ratio of “successes/trials”. Frequency experiments are a compelling simple
case for which any general calculus ought to give the obvious rules derived from multiplication
and addition of (large) integers. Bayesian calculus passes this test. Moreover, the Cox definition of
probability is more general than the frequentist definition, because it refers to arbitrary propositions
without having to invent a “many-worlds” scenario involving all the events which might have
happened but did not.

11

12 CHAPTER 1. PROBABILITY THEORY AND BAYES’ THEOREM

Conceivably, there may be no general language at all. One can imagine the existence of some
other compelling simple case for which Bayesian calculus might give a demonstrably “wrong” result.
We cannot prove that such counter-examples do not exist. However, it is difficult to see how one
might be constructed. Despite much effort, nobody has yet found one, and so we shall adopt a
rigorous Bayesian approach.

In scientific data analysis, we wish to use our data D to make inferences about various possible
hypotheses A, B, C, We have no rational alternative but to code this inference in terms of
conditional probabilities

Pr(A | D), Pr(B | D), Pr(C | D), . . .

5 Using “h” to represent any particular hypothesis A,B,C, . . . , we need the probability density

Pr(h | D)

as a function of h.
The data D do not give us this directly. Instead, the data give us the likelihood

Pr(D | h)

as a function of h. The particular algebraic form of the likelihood may involve delta functions
for exact data, or Gaussian factors if the data have normally-distributed noise, and may include
various correlations and other peculiarities of the observing system which produced the data. Just
about the simplest example would be a single measurement

D = h± σ

of a single number h, which (assuming normally distributed error) is just a convenient shorthand
for

Pr(D | h) = (2πσ2)−
1/2 exp(−(D − h)2/2σ2).

Another common example concerns data which are integer counts with mean h, subject to Poisson
statistics. In that case,

Pr(D | h) = e−h hD/D!

In order to reverse the conditioning from Pr(D | h) to the required Pr(h | D) we use Bayes’
theorem. A useful trick for navigating through the morass of possible algebraic manipulations
when dealing with multiple propositions is to start with the joint probability density of everything
relevant, and expand it in various ways. Here we have

Pr(h,D) = Pr(h) Pr(D | h)

= Pr(D) Pr(h | D)

Evidence

6

Inference

6

Prior

?

Likelihood

?

1.2. ENTROPIC PRIOR FOR A DISTRIBUTION 13

which is the basic tool of Bayesian data analysis. Basically, we seek the inference

Pr(h | D) = Pr(h) Pr(D | h)/Pr(D)

about h (Bayes’ Theorem), but the evidence

Pr(D) =
∑
h

Pr(h,D)

is hardly less important. In order to calculate these quantities, we need the “prior probability”
density Pr(h) as well as the experimental likelihood. This prior codifies our prior expectations
about possible results h before acquiring the new data D . Probability theory tells us how to use
data to modulate this prior expectation into a posterior inference, but it does not tell us how to
assign the prior expectation in the first place. Actually, this is quite reasonable: a language should
not impose on what one wishes to say, and it leaves open the question of assigning the prior.

Different analysts may legitimately disagree on their choice of prior. However, the evidence lets
us discriminate objectively between them. Each choice X, Y , . . . of prior leads to a numerical
evidence Pr(D), more properly written now as Pr(D | X), Pr(D | Y), Unless we have
particular grounds for favouring one choice over another, our inferences Pr(X | D), Pr(Y | D), . . .
about the available choices will follow the evidence values in proportion. Indeed, the evidence
discriminates between priors in exactly the same way that the likelihood discriminates between
hypotheses. In principle, one perhaps ought to average over the different choices of prior, but in
practice the discrimination is usually good enough that we may simply choose the “best” available
prior, on the basis of the evidence, and ignore the others.

1.2 Entropic prior for a distribution

Many distributions h of interest in science are positive and additive. For example, the intensity of
light across an image is positive (obviously) and additive (meaning that the flux received across
two non-overlapping patches is the sum of the individual fluxes). Likewise, a power spectrum is
positive (obviously) and additive (meaning that the net power in two non-overlapping bands is the
sum of the powers in the individual bands). We call a positive and additive distribution a PAD.

We seek the prior density of h
Pr(h)

where each individual h now takes the form of a positive additive function h of position x (defined
in one or more dimensions).

h(x) = density at position x

so that ∫
h(x) dx = quantity within the range of integration.

The corresponding discrete form on L cells i = 1, 2, . . . , L is

Pr(h)

where
hi = quantity in cell i

so that ∑
hi = quantity within the range of summation

14 CHAPTER 1. PROBABILITY THEORY AND BAYES’ THEOREM

tends to the continuous form as the cells shrink and L→∞.
As a step towards finding Pr(h), we consider the easier problem of assigning a “best” h . Later,

we shall identify this with the most probable h , and thus gain information about Pr(h) itself.
Following the Cox mode of reasoning, we suppose that there is a general prior Pr(h), and hence a
generally valid rule for assigning the most probable h . If there is, it must be valid for special types
of data, and in particular the most probable selection must also be valid for such data. We shall
use the “kangaroo” argument (Gull and Skilling 1984a):

If the proportion of some entity which has a given property is known to be p, then the
most probable estimate of the proportion in some subclass which has that property is
(in the absence of any information connecting the subclass with the property) the same
number p.

For example, if 30% of kangaroos are left-handed, then the most probable estimate of the proportion
of kangaroos in Queensland which are left-handed is also 30% (unless more is known about the
handedness of Queensland kangaroos).

Remarkably, the consequence of this apparently weak requirement (Shore and Johnson 1980,
Tikochinsky, Tishby and Levine 1984, Gull and Skilling 1984a,b) is that the “best” set of proportions
pi (i = 1, 2, . . . , L) on L a priori equivalent cells must be obtained by maximising the entropy

S(p) = −
L∑
i=1

pi log pi

No other function will always give the required uncorrelated form of “best” proportions. This result
is slightly restrictive in that proportions must sum to 1, whereas more general positive additive
distributions need not. In fact, the only acceptable generalisation of this (to PADs h which need
not add to 1) is to select h by maximising the entropy

S(h) =
L∑
i=1

(hi −mi − hi log(hi/mi)) (1.1)

where mi is the measure assigned to cell i (Skilling 1988). In the continuum limit the entropy
becomes

S(h) =
∫
dx (h(x)−m(x)− h(x) log(h(x)/m(x))).

The global maximum of S is at h = m (where S = 0), so that the (negative) value of S measures the
deviation of h from the assigned measure m. Often, m may be set to a constant, perhaps justified
by an appeal to spatial invariance. More generally, m(x) can be used as an initial or “default”
model for the distribution h, to which h will default in the absence of data.

Identifying the “best” h with the most probable, this result shows that the most probable h
under definitive “testable” constraints (Jaynes 1978) is to be found by maximising the entropy of
h. Applied directly to the assignment of probability densities, this prescription is the Principle of
Maximum Entropy (Jaynes 1978), here separated from its usual derivation in terms of counting
large numbers of states. However, our problem is more difficult: we do not wish merely to assign
an h—we have to determine a full prior probability density Pr(h).

If the most probable h is always to be found by maximising S, then Pr(h) can only be some as
yet unknown but monotonically increasing function

Pr(h) = Φ(S(h)).

1.3. GAUSSIAN LIKELIHOOD 15

To find Φ we need some quantified special case which is consistent with the selection requirement
above and for which Pr(h) is known. We use the following “monkey” argument (Gull and Daniell
1978):

If a team of monkeys throws a very large number N of quanta randomly at the L a
priori equivalent cells of a distribution, then the probability of obtaining a particu-
lar set (n1, n2, . . . , nL) of occupation numbers shall be proportional to the degeneracy
N !/n1!n2! . . . nL!

Of course, we do not suppose that distributions of interest have to be formed in this way; we merely
remark that we would like to obtain the right answer in that special case. The consequence of this
argument (Skilling and Gull 1989, Skilling 1989) is that Φ must be of exponential form

Φ(S) ∝ exp(αS)

where α is some constant. A full treatment yields also the diagonal metric tensor [g] = −∇∇S and
the corresponding invariant volume element (det[g])1/2dLh which should be assigned to the space
of distributions h . Here, and henceforward, we use square brackets [] to denote a diagonal matrix.
For later convenience, we rewrite the metric tensor in contravariant form as

[µ] = [g]−1 = (−∇∇S)−1

whence the invariant volume element becomes dLh/ det[µ]1/2. The final result is that

Pr(h ∈ V | α) =
1

ZS(α)

∫
V

exp(αS(h)) dLh/ det[µ]
1/2

where V is a domain of PADs h , and

ZS(α) =
∫
∞

exp(αS(h)) dLh/ det[µ]
1/2

is the scaling constant required to ensure that Pr(h) is properly normalised.
We have now determined the prior completely, apart from the single number α which remains

unknown. Because S is dimensional (having the units of total h) and the exponential must have
dimensionless argument, it follows that α too must be dimensional, having the inverse units to total
h . Accordingly, α cannot be determined a priori , and the prior analysis can go no further.

If there is a general prior, it must be the one derived here. Conceivably, there may be no general
prior at all. One can imagine the existence of some other compelling simple case for which this
prior might be demonstrably “wrong”. However, such other cases as have been investigated, such as
the geometrical arguments of Levine (1986) and Rodŕıguez (1989), serve to confirm this functional
form, and might indeed be developed into alternative derivations of it. The coefficient α is known
as the “regularisation constant” by analogy with statistical regularisation theory.

1.3 Gaussian likelihood

Noise in experimental apparatus is often adequately described by normal statistics. Specifically,
we then take the probability density for errors on a series of N measurements Dk (for k = 1, 2,
. . . , N) to be Gaussian, with a covariance matrix [σ−2], so that the likelihood is

Pr(D | h) =
e−L(h)

ZL

16 CHAPTER 1. PROBABILITY THEORY AND BAYES’ THEOREM

where
ZL =

∫
e−L(h) dND,

and

L(h) = 1
2(D − F (h))T [σ−2] (D − F (h)) (1.2)

= 1
2χ

2(h)

and F (h) are the data predicted from the hidden-space distribution h , so that

ZL = (2π)
N/2/det[σ−1].

We take the covariance matrix [σ−2] to be diagonal, as from independent errors. Although
these assumptions are not essential, they facilitate our analysis.

Chapter 2

Classic maximum entropy

2.1 Classic maximum entropy

Classic maximum entropy uses the Bayesian formulation just described to produce the posterior
probability cloud Pr(h | D).

The full joint probability density can be expanded as

Pr(h , α,D) = Pr(α) Pr(h | α) Pr(D | h , α)

Taking these factors in reverse order, we can drop the conditioning on α in Pr(D | h , α) because it
is h itself which induces the data. Thus Pr(D | h , α) = Pr(D | h) = exp(−L(h))/ZL for Gaussian
errors. Next, the factor Pr(h | α) is the entropic prior exp(αS(h))/ZS(α). We use the notation
S(h) and L(h) to indicate that the maximum entropy formalism can be extended to accommodate
forms other than (1.1) and (1.2) on pages 14 and 16 for S(h) and L(h). Alternative entropy forms
must, however, like the standard form 1.1, be convex functions of h with a global maximum value
of zero. This will be illustrated in Chapter 3. Hence

Pr(h , α,D) = Pr(α) Pr(h | α) Pr(D | h)

= Pr(α)
exp(αS(h)− L(h))

ZS(α) ZL
. (2.1)

If L(h) is a quadratic function of h , then for each α there is necessarily (because αS(h)−L(h)
is also convex in h) a single maximum of (2.1) over h at ĥ(α), where ĥ obeys

α
∂S
∂h

=
∂L
∂h

.

Gaussian approximation

Further analysis using the exact form (2.1) appears to be algebraically and numerically intractable,
and so we form a Gaussian approximation about ĥ . The Hessian matrix of αS − L is

− ∂2

∂h ∂h

(
αS(h)− L(h)

)
= −α∇∇S +∇∇L

= [µ−
1/2]
(
αI + [µ

1/2]∇∇L [µ
1/2]
)

[µ−
1/2]

= α [µ−
1/2] B [µ−

1/2]

17

18 CHAPTER 2. CLASSIC MAXIMUM ENTROPY

where

B = I + A/α

I = identity matrix, and A = [µ
1/2]∇∇L [µ

1/2].

Hence the Gaussian approximation to (2.1) is

Pr(h , α,D) = Pr(α)
exp(αS(ĥ)− L(ĥ))

ZS ZL
exp

(
−α2 (h − ĥ)T [µ−

1/2] B [µ−
1/2] (h − ĥ)

)
. (2.2)

The regularisation constant α

In order to investigate the rôle of α more closely, we integrate h out of (2.2), obtaining

Pr(α,D) =
∫

Pr(h , α,D) dLh/ det[µ]
1/2

= Pr(α)Z−1
L exp(αS(ĥ)− L(ĥ)) (det B)−

1/2. (2.3)

We now need to assign Pr(α). Because α is a scale parameter, complete ignorance demands
the improper Jeffreys prior Pr(α) ∝ α−1. However, impropriety carries a large penalty, in that
the evidence Pr(D) =

∫
dα Pr(α,D) can become arbitrarily small. In practice, users of Jeffreys

priors cut them off outside some largish range, but even then there is a large penalty relative to an
analyst who already knew the order of magnitude of α. It seems to us that this cost is too high.

With theoretical objectivity being impractical, we propose to recover objectivity by convention.
In practice, one almost always knows the order of magnitude of what one is going to observe (to
which α is inversely related). Accordingly, we recommend reducing both tails of the Jeffreys prior
by single powers of α, to give the fully convergent form

Pr(α | α0) =
2α0

π(α2 + α2
0)

(α > 0).

Although the purist would require α0 to be fixed in advance, the pragmatist may observe that the
experiment is likely to have been set up so that the inferred range of α will not be too far from α0.
Hence we recommend choosing α0 to maximise the evidence Pr(D | α0). This involves evaluating
Pr(α,D) for a sufficient range of α, and performing the integrals over α numerically. In this way,
adequate objectivity can be retained, so that (for example) maximum entropy results could be
compared with different Bayesian calculations (e.g., Skilling 1991).

With realistically large datasets, though, it is seldom necessary to attend to such subtleties. In
most practical cases, the evidence Pr(D | α) is so strongly peaked that it overwhelms any plausible
prior on α. We then just select this “best” value α̂ and proceed on the assumption that α is then
fixed.

Differentiation of (2.3) shows that the evidence is extremal over α when

−2αS(ĥ) = G, G = trace((αB)−1A)

and maximal when d(−2αS/G)/dα > 0 at the extremum.
Using the eigenvalues λ of A to write

G =
∑ λ

λ+ α

2.1. CLASSIC MAXIMUM ENTROPY 19

gives G a natural interpretation as the number of “good” measurements. Each eigenvalue larger
than α represents an informatively accurate independent measurement, which contributes roughly
1 to G. Conversely, each eigenvalue less than α represents an inaccurate measurement, which
contributes roughly 0 to G. The most probable value of α occurs when the number of good mea-
surements equals the dimensionless amount −2αS(ĥ) of structure in the distribution ĥ (remember
S is negative).

When α is small, G and S go to fixed limits, so that −2αS/G < 1. Conversely, when α is
large, it is usually the case that the data are sufficiently informative to ensure −2αS/G > 1. In
that case, some intermediate value of α will be the most probable. Although mildly unusual, it is
perfectly possible for there to be more than one local maximum of Pr(α | D), in which case the
largest ought to be found and selected. It is also possible for the data to be sufficiently in accord
with the assumed default model m that α =∞ is the most probable value, in which case the cloud
for h collapses because there is no adequate evidence for any change from the model.

With this assignment of α̂, the corresponding probability cloud

Pr(h | D) = constant× exp
(
− α̂2 (h − ĥ)T [µ−

1/2] B [µ−
1/2] (h − ĥ)

)
(2.4)

is the maximum entropy result. It represents the inference about h , conditional in particular on
the default model m . Accompanying it is the evidence

Pr(D) = Z−1
L exp(α̂S(ĥ)− L(ĥ)) (det B)−

1/2

= (2π)−
N/2 det[σ−1] exp(α̂S(ĥ)− L(ĥ)) (det B)−

1/2 (2.5)

for Gaussian errors. The term det[σ−1] in (2.5) confirms that Pr(D) has the dimensions of [data]−N .

The maximum entropy trajectory.

The solutions ĥ for various values of α define the “maximum entropy trajectory”, starting from
ĥ = m at α =∞ and ending at minimum L when α = 0. As a matter of practical computation, it
is advantageous to start from ĥ = m and iterate down the trajectory until the stopping criterion
is satisfied. We call the value of α at which this occurs the “stopping” value. It is usually time-
consuming to recover from a PAD h which lies far from the trajectory.

A general feature of maximum entropy trajectories is that structure in h for which there is
good evidence in the data is picked up first. Only later does the trajectory bend around to acquire
structure for which there is progressively weaker evidence. This qualitative behaviour can be seen
in Figure 2.1, which illustrates maximum entropy applied to finding a two-cell PAD h = (h1, h2)
from the noisy data

0.56h1 + 0.83h2 = 5.32± 0.48,
0.83h1 − 0.56h2 = 4.24± 2.00.

Solid contours are of L,

L(h) = 1
2

(
(0.56h1 + 0.83h2 − 5.32)2/0.482 + (0.83h1 − 0.56h2 − 4.24)2/2.002

)
.

Dashed contours are of entropy

S(h) = h1 + h2 −m1 −m2 − h1 log(h1/m1)− h2 log(h2/m2) with m1 = m2 = 1.

The line of stars marks the trajectory of maxima of entropy over different values of L, starting
at the global maximum of entropy at h = m and ending at the L minimum where the data are
fitted as closely as possible (exactly, in this example). Because S is a strictly convex function of h ,
and L is concave, each such maximum is necessarily unique.

20 CHAPTER 2. CLASSIC MAXIMUM ENTROPY

0 m1 h1 −→
0

m2

h
2
−→

Figure 2.1: Maximum entropy trajectory.

Maximum entropy clouds.

Figures 2.2 to 2.7 illustrate classic maximum entropy clouds for the numerical example of Figure 2.1.
For any given value of α, the posterior probability cloud of h takes a roughly Gaussian form centred
at the corresponding point ĥ(α) of the maximum entropy trajectory. Each cloud is plotted as a
scatter diagram of points randomly picked from the corresponding probability density exp(αS−L),
and scaled for display to a constant number of samples.

Initially, at large α (Figure 2.2), the cloud is small, being tightly constrained by the entropy.
Later, at smaller α, the cloud expands until (by about Figure 2.5) the accurate data have been
fitted and the entropy exerts relatively little effect in such directions. At yet smaller values of α,
less accurate data become fitted until ultimately (at α = 0) the cloud fits all the data (in so far as
this is consistent with positivity of h) and is defined purely by L (Figure 2.7).

The most probable cloud is close to that in Figure 2.6, so that there happens to be rather little
entropic regularisation in this small-scale problem.

2.1. CLASSIC MAXIMUM ENTROPY 21

0 m1 h1 −→
0

m2

h
2
−→

Figure 2.2: Maximum entropy cloud.

0 m1 h1 −→
0

m2

h
2
−→

Figure 2.3: Maximum entropy cloud.

22 CHAPTER 2. CLASSIC MAXIMUM ENTROPY

0 m1 h1 −→
0

m2

h
2
−→

Figure 2.4: Maximum entropy cloud.

0 m1 h1 −→
0

m2

h
2
−→

Figure 2.5: Maximum entropy cloud.

2.1. CLASSIC MAXIMUM ENTROPY 23

0 m1 h1 −→
0

m2

h
2
−→

Figure 2.6: Maximum entropy cloud.

0 m1 h1 −→
0

m2

h
2
−→

Figure 2.7: Maximum entropy cloud.

24 CHAPTER 2. CLASSIC MAXIMUM ENTROPY

Integrated maximum entropy cloud.

The clouds in Figures 2.2 to 2.7 were plotted with fixed numbers of points, in order to produce clear
pictures. Had they been plotted in accordance with the posterior probability of their α values, the
initial clouds far from the “best” Figure 2.6 would have been invisibly faint.

Figure 2.8 shows the full posterior cloud, correctly integrated over the permissible values of α.
Even for this very small-scale two-cell problem, the integrated cloud is visually indistinguishable
from the “best” individual cloud (Figure 2.6) obtained by fixing α at its most probable value.

0 m1 h1 −→
0

m2

h
2
−→

Figure 2.8: Integrated maximum entropy cloud.

2.2 Inferences about the reconstruction

The posterior probability cloud Pr(h | D) has the interesting and entirely correct property that
as the number of cells L → ∞ the quantity hi in any particular cell goes to zero as O(L−1),
whereas the corresponding standard deviation goes to zero only as O(L−1/2). This means that the
proportional error on individual components of h becomes arbitrarily large in the continuum limit.
This is correct, because one should not expect macroscopic data of integral form

Dk =
∫
dxh(x)Rk(x)± noise

to be informative about the microscopic structure of h . However, macroscopic data are informative
about macroscopic structure, and integrals of the form

ρ =
∫
dxh(x) p(x)

2.2. INFERENCES ABOUT THE RECONSTRUCTION 25

where p is a “mask” function of position are well determined. Technically, we may note at this
point that the positive additive distribution h really is a distribution, and not a function. It is
defined through data integrals over position and used through other integrals over position, so that
it is a member of the dual vector space to that of functions of position. Members of this space are
formally known as distributions, and their pointwise values become undefined in the continuum
limit.

Digitising to

ρ =
L∑
i=1

hipi

the probability cloud for h integrates to give a Gaussian posterior density Pr(ρ | D) for ρ, with

ρ = ρ̂± δρ

where
ρ̂ =

∑
ĥipi = ĥTp

(as might be expected) and
(δρ)2 = pT [µ

1/2] B−1[µ
1/2]p/α̂.

For a given mask p(x), this posterior density of ρ is well defined in the continuum limit L → ∞.
p(x) might, for example, be set to 1 in a certain domain and 0 elsewhere, in which case ρ would
estimate the amount of h in that domain. To investigate a difference between two regions, ρ might
be set +1 in one region, −1 in the other, and 0 elsewhere. Clearly there are many possibilities.

Note that the probability density of ρ, like that of h , is conditional in particular on the assign-
ment of the default model m . Were p to be one of the experimental response functions Rk, the
corresponding mock datum would not reproduce the actual datum Dk exactly: prior probability
factors almost always destroy exact fits to data. Neither would the error σk be reproduced exactly.
In fact the estimated error would be less than σk, possibly considerably less.

Indeed, if the original model m was sufficiently close to the data that there was no evidence
for any difference, the entropy formalism would return h = m , and would claim all estimates to
be perfectly accurate with zero error. That does not mean that the estimates become magically
accurate—it just means that there is no evidence for any deviation from the model. Presumably
the user is somewhat uncertain about what the reconstruction should be, otherwise there would be
little reason to run maximum entropy. That means that the user will also be uncertain about the
model m , because otherwise he would simply assign “m = the assumed truth”. If this assignment
of m was correct, the data ought to agree reasonably well, so that the formalism would be entirely
correct to return h = m with no error, thus ignoring such discrepancies as could plausibly be
explained as noise.

Logically, such uncertainties in the model should always be taken into account, and will induce
their own variations in subsidiary estimates of derived quantities. In the special case of the entropy
formalism returning α = ∞ and h = m , the entire onus of such variations falls upon the model.
Indeed, advanced use of maximum entropy relies on suitably sophisticated treatment of the model
m (Gull 1989). In practice, though, assignment of a simple, uniform model often gives good
reconstructions with sensible error bars.

One warning is that the statistics of ρ are derived from a Gaussian approximation to Pr(h | D).
It can happen that a computed range extends into negative values, (e.g., ρ̂± δρ = 0.1± 0.3) even
when ρ is a positive functional of the positive distribution h . Such results signal a local breakdown
of the Gaussian approximation, which we are presently unable to quantify.

26 CHAPTER 2. CLASSIC MAXIMUM ENTROPY

Although the above discussion concerned inference about a linear functional ρ of the distribution
h, this restriction is by no means necessary. Any functional ρ = φ(h) has a probability density

Pr(ρ | D) =
∫
δ(ρ− φ(h)) Pr(h | D) dLh/ det[µ

1/2]

derived from that of h itself.
The median location in a one-dimensional distribution is a good example of a nonlinear func-

tional. The location of a maximum is another example. Here, though, one has to be more careful,
because pointwise values of a distribution become undefined in the continuum limit, and the loca-
tion of the maximum becomes correspondingly uncertain. That means that one should blur h to
some finite resolution before attempting to determine a maximum.

Whatever functional ρ is required, one can obtain independent samples from its distribution
simply by taking independent samples ht (t = 1, 2, . . . , T) from the posterior probability density
Pr(h | D) of h, and evaluating ρ(ht) for each. Then the mean ρ̂ is estimated as

ρ̂ = T−1
∑
t

ρ(ht),

the variance as
(δρ)2 = T−1

∑
t

(ρ(ht)− ρ̂)2

and so on. Other facets of the (non-Gaussian) probability density of ρ can also be estimated,
provided one takes sufficient samples.

A particularly useful form of presentation is to display the samples ht as a “movie” with t
representing time. This is even more effective if the successive samples are allowed to be correlated,
because one then sees a sample ht moving ergodically and quasi-continuously through its probability
distribution. The reliability of features in h can easily be assessed by eye from movie displays: all
one does is watch the feature to see how frequently it is present.

All this extra generality, to nonlinear functionals and movie displays, relies on being able to
compute samples from the posterior probability density of h. It is one of the strengths of MemSys5
that this is now possible.

2.3 Basic iterative algorithm

The most efficient way of computing the required central reconstruction ĥ(α̂) appears to be to
iterate down the maximum entropy trajectory, decreasing α from its initial value of ∞ where
h = m until the stopping value is reached.

Having selected a value of α, the first need is for a procedure to iterate h towards ĥ(α) at that
value. This is defined by the maximum of

Q(h) = αS(h)− L(h)

Locally, the quadratic approximation to Q is

Q(h + δh) = Q(h) + δhT∇Q+ 1
2δh

T ∇∇Qδh ,

where
∇∇Q = −[µ−

1/2] (αI + A) [µ−
1/2]

2.3. BASIC ITERATIVE ALGORITHM 27

and this may be presumed to be sufficiently accurate within some trust region near h , defined using
the entropy metric [µ] by

|δr |2 = δhT [µ]−1 δh ≤ r2
0.

The distance limit r0 defining the trust region radius should, on dimensional grounds, be set to
some value of the order of (trace[µ])1/2. Maximisation of Q within the trust region is effected by

δh = [µ
1/2] (βI + A)−1 [µ

1/2]∇Q

where β ≥ α is set just large enough to ensure that the trust region constraint is obeyed.
The second need is for α to be changed (usually downwards) towards the stopping value. For

safety, this should be done in steps sufficiently small that the corresponding change in h should
not violate the current trust region constraint. This can be done alongside the iteration of h itself.

The third need is to converge to the correct stopping value α̂. This can always be defined by
an expression of the form

Ω(α) = 1 with
dΩ
dα

< 0.

For classic maximum entropy, Ω = G/(−2αS), although other criteria can be defined. Derivative
information about dΩ/dα is generally difficult to compute, so that the stopping value is best
approached by extrapolating or interpolating a table of values of (α,Ω) remembered from previous
iterates.

Finally, a termination criterion is needed to determine when the computed probability cloud
is sufficiently close to correct that the algorithm should be stopped. The correct cloud, centred at
the correct trajectory point ĥ , is given by (2.4) on page 19:

Pr0(h | D) = constant× exp
(
−α2 (h − ĥ)T [µ−

1/2] B [µ−
1/2] (h − ĥ)

)
.

If a slightly different estimate h̃ were produced, it would be taken to represent the slightly different
cloud

Pr1(h | D) = constant× exp
(
−α2 (h − h̃)T [µ−

1/2] B [µ−
1/2] (h − h̃)

)
.

The mismatch between these clouds should be measured by their (positive) cross-entropy

H =
∫

Pr1 log(Pr1 /Pr0) dLh/(det[µ])
1/2

which evaluates to

H = α
2 (h̃ − ĥ)T [µ−

1/2] B [µ−
1/2] (h̃ − ĥ)

= 1
2αgT [µ

1/2] B−1[µ
1/2] g

where

g = ∇Q

= α∇S +
(
∂F

∂h

)T
[σ−2] (D − F)

for Gaussian errors. Because of noise on the data, we expect random fluctuations ±σ on each
datum, so that our knowledge of g is limited by

δg =
(
∂F

∂h

)T
[σ−1] r

28 CHAPTER 2. CLASSIC MAXIMUM ENTROPY

where r is a random vector of unit normal components. Accordingly, the expectation mismatch
between clouds due to noise is

〈H〉 =
1

2α

〈
rT [σ−1]

(
∂F

∂h

)
[µ

1/2] B−1[µ
1/2]
(
∂F

∂h

)T
[σ−1] r

〉
= 1

2 trace((αB)−1A)

= G/2.

This result can be understood by noticing that “bad” degrees of freedom in h are controlled by the
entropy, and do not fluctuate with the noise, so only the good degrees of freedom contribute to the
mismatch.

We see that if H is less than some fraction of G, then the cloud represented by the current esti-
mate h̃ overlaps the true cloud to within the corresponding fraction of the noise. This mathematical
guarantee is the termination criterion.

The basic iterative algorithm can be summarised as follows:

(1) Scalars:
S(h) =

∑
(h −m − h log(h/m))

and
L(h) = 1

2(D − F (h))T [σ−2] (D − F (h)).

(2) Iteration:
δh = [µ

1/2] (βI + A)−1[µ
1/2] g

and
H = 1

2αgT [µ
1/2] B−1[µ

1/2] g

with
|δr |2 = δhT [µ−1] δh ≤ r2

0

where
g = α∇S −∇L.

(3) Probabilities:
Pr(D | α) = Z−1

L exp(αS(ĥ)− L(ĥ)) (det B)−
1/2

and
G = trace((αB)−1A)

where
A = [µ

1/2]∇∇L [µ
1/2]

and
B = I + A/α.

G gives the stopping criterion, and Pr(D | α̂) enables variables to be inferred.

(4) Samples from the posterior cloud Pr(h | D)

h = ĥ + [µ
1/2] B−

1/2r/α
1/2.

(5) Linear features of h :

ρ̂ =
∑

ĥipi = hTp

and
(δρ)2 = pT [µ

1/2] B−1[µ
1/2] p/α.

2.4. THE INTRINSIC CORRELATION FUNCTION 29

2.4 The intrinsic correlation function

One of the fundamental axioms on which maximum entropy is based (Skilling 1989) is that entropy
maximisation should not itself introduce correlations between individual elements of a PAD. This
was illustrated in the “kangaroo argument” of Section 1.2. Nonetheless, in many (if not all) cases
the object of interest is known a priori to contain correlations, typically between neighbouring
elements. The source and scale of the correlations depends on the physical nature of the object or
phenomenon under investigation.

The recommended technique for encoding this correlation is to derive the quantity of interest,
such as an image or spectrum, and henceforth designated f(y) or f in the discrete case with M
cells, as a ‘blurred’ version of an underlying ‘hidden variables’ PAD h(x) (Gull 1989, Charter 1990).
The ‘blurring’ is accomplished with an operator C(y, x), through an integral of the form

f(y) =
∫
C(y, x)h(x) dx

or, in the discrete case

fj =
L∑
i=1

Cjihi (j = 1, 2, . . . , M)

so that
f = C h .

This operator is known as the intrinsic correlation function (ICF).
By construction, all the prior expectation of correlation is assigned to the ICF, so that h

itself is a priori uncorrelated. Accordingly, it is legitimate to use an entropic prior on h, and all
the corresponding analysis remains valid. Without the ICF construction, the MaxEnt analysis
would simply fall apart. Often, the intrinsic correlation may be modelled by convolution with
a Gaussian (say) of some given width. More sophisticated usage is possible, however, and the
explicit incorporation of intrinsic correlation functions is a major advance in the maximum entropy
formalism.

Depending on the nature of the ICF, one may wish to digitise h and f at different resolution,
so that h and f may be of different sizes, and so should formally be considered to belong to two
different spaces. The space to which h belongs is known as hidden space, and that to which f
belongs is known as visible space. We let L be the number of cells in hidden space (as before),
and set M to the number of cells in visible space.

It was pointed out in Section 2.2 that the proportional error on individual components of h
becomes arbitrarily large in the continuum limit. Since f(y) is defined in terms of an integral over
h(x), however, pointwise errors on f are well-behaved. It should be noted, though, that a series
of pointwise errors on f may well be highly correlated, and should therefore be interpreted with
caution.

2.5 Predicted data

Although nonlinear variants are allowable, the predicted data F are generally considered to be
related to the visible distribution f via a N ×M matrix R of response functions, so that

Fk =
M∑
j=1

Rkjfj (k = 1, 2, . . . , N)

30 CHAPTER 2. CLASSIC MAXIMUM ENTROPY

=
M∑
j=1

Rkj

L∑
i=1

Cjihi

and hence
F = R C h and

(
∂F

∂h

)
= R C .

Note again the dimensions of the three spaces:

L = dimension of hidden space
M = dimension of visible space
N = dimension of data space.

2.6 Inferences about the noise level and other variables

The classic maximum entropy analysis carries with it the overall probability of the data from (2.5)
on page 19:

Pr(D) =
∫
dαPr(α | D) = Pr(α̂ | D)

= (2π)−
N/2 det[σ−1] exp(α̂S(ĥ)− L(ĥ)) (det B)−

1/2.

This expression becomes useful when it is realised that, like any other probabilistic expression,
it is conditional on the underlying assumptions. In fact all the probabilities derived in the classic
maximum entropy analysis have been conditional upon a choice of model m , experimental variables
defining the response functions, noise amplitudes σ, and so on, so that Pr(D) is really a shorthand
for

Pr(D |m ,R,σ, . . .).

If such variables are imperfectly known, these conditional probability values can be used to refine
our knowledge of them, by using Bayes’ theorem in the form

Pr(variables | D) = constant× Pr(variables) Pr(D | variables).

Ideally, one would set up a full prior for unknown variables and integrate them out in order to
determine Pr(h | D). In practice, though, with large datasets it usually suffices to select the single
“best” values of the variables, just as was the case for the regularisation constant α.

A common special case of this concerns experimental data in which the overall noise level
is uncertain, so that all the standard deviations σ in Pr(D) above should be scaled with some
coefficient c. Rescaling α to α/c2 for convenience gives

Pr(D | α, c) = (2πc2)−
N/2 det[σ−1] exp

(
(αS(ĥ)− L(ĥ))/c2

)
(det B)−

1/2.

For this case, the maximum entropy trajectory itself is unaltered and parameterised by the
same values of α, though the probability clouds for h are of different overall size. The Evidence is
maximised over c when

c2 = 2 (L − αS)/N.

At this scaling, we note that (for linear data) the χ2 misfit statistic

χ2 = (D − F)T [c−2σ−2] (D − F)

2.6. INFERENCES ABOUT THE NOISE LEVEL AND OTHER VARIABLES 31

evaluates to
χ2 = 2L(h)/c2.

Thus, when the stopping criterion is satisfied at the most probable α,

χ2 +G = N (= number of data).

We see that theN data separate into the “good” measurements which are sufficiently informative
to be fitted and induce structure in the central reconstruction ĥ , and the remaining number “χ2”
which are not informative about h and which are “bad” measurements serving merely to specify
the noise scaling.

A corollary of this is that χ2 at ĥ is always less than the number of data. Redressing the
balance, the average χ2 over the whole posterior cloud is just N .

With large datasets, the noise scaling is determined to high accuracy, enough to overwhelm
all but the most rigid prior knowledge of it, essentially because all the many “bad” measurements
are being used to determine this single number. Accordingly, automatic noise scaling is usually
recommended.

Chapter 3

Extensions and generalisations

3.1 Positive/negative distributions

The maximum entropy method can be extended to reconstruct distributions h which can be either
positive or negative. It may be appropriate to describe such a distribution as the difference between
two subsidiary positive distributions u and v : thus

h = u − v .

The total entropy, relative to a common model m , is

S(u , v) =
L∑
i=1

(ui −mi − ui log(ui/mi)) +
L∑
i=1

(vi −mi − vi log(vi/mi)).

If we wished to find both u and v separately, we would incorporate the linear mapping (u , v)→ h
into the ICF, and proceed with the standard analysis. However, we are not usually interested in
this detail, wishing to estimate h only, with its corresponding visible distribution f . In that case,
we note that under any constraint on h , the gradients with respect to u and v must be equal and
opposite,

∂S

∂u
= −∂S

∂v

so that the maximising u and v always obey

uv = m2.

The entropy can now be rewritten as a functional of h alone.

S(h) =
L∑
i=1

(ψi − 2mi − hi log((ψi + hi)/2mi)), ψi = (h2
i + 4m2

i)
1/2.

All the original maximum entropy algebra can be performed with this revised form, with appropriate
modifications to the gradient and curvature. The underlying PADs u and v disappear from the
subsequent formulae, and we can work directly with h , which may now be of either sign.

33

34 CHAPTER 3. EXTENSIONS AND GENERALISATIONS

3.2 Fermi–Dirac distributions

Another extension is to positive distributions which have an upper limit, such as reflective albedo,
or electron density in a semiconductor band. Here we may think of the PAD h being accompanied
by a second PAD k , such that

hi + ki = 1 in each cell.

(Setting the upper limit to 1 is a mere convention; any other value can be scaled to 1 by appropriately
re-scaling h and k .) Because both h and k are positive, we have

0 ≤ hi ≤ 1 in each cell.

The total entropy, relative to a model mi for hi (and 1−mi for ki) is

S(h) =
L∑
i=1

(
−hi log

hi
mi
− (1− hi) log

1− hi
1−mi

)

Again, all the original maximum entropy algebra can be performed with this revised form, with
appropriate modifications. The extra PAD k disappears from the subsequent formulae, and we can
work directly with the now-limited h .

3.3 Quadratic entropy

Sometimes, one desires neither an upper nor a lower limit on the values of hi. In that case we
define

S(h) = −
L∑
i=1

h2
i /2mi.

Maximum entropy then reduces to least squares, scaled proportionally to model variance m. The
simplest “derivation” of this assignment is to note that in the large-α limit h ' m , the standard
entropy approaches

S(h) ' −
L∑
i=1

(hi −mi)2/2mi,

whence an offset of the origin of h gives the assigned quadratic form.

3.4 Fixed total

One does not always require the full generality of the standard entropy formula, and it is possible
to restrict this in various ways. One such restriction is to require a fixed total

L∑
i=1

hi =
L∑
i=1

mi = fixed constant.

Either one may know this total
∑
h accurately, from a particularly precise measurement, or one

may impose it as part of the structure of the problem, as when h represents a set of proportions,
summing to one by definition. This restriction on h removes one degree of freedom from the
possible inferences. The calculations are performed as usual, but with that degree of freedom
explicitly projected out.

Chapter 4

Algorithmic details

4.1 Iterative algorithm in hidden space

With the various extensions and generalisations just described, the stopping criterion Ω takes one
of the following forms:

Option 1: Classic maximum entropy: Ω = G/(−2αS)
Option 2: Classic automatic, with noise scaling: Ω = Gc2/(−2αS) with c2 = 2 (L − αS)/N
Option 3: Ad hoc “α fixed”: Ω = 1/α
Option 4: Historic maximum entropy : Ω = N/(2L) (see Appendix B)

The iterative hidden-space algorithm can then be summarised as follows:

(1) Scalars:
S(h) =

∑
(h −m − h log(h/m)) or variant

and
L(h) = 1

2(D −R C h)T [σ−2] (D −R C h).

(2) Iteration:
δh = [µ

1/2] (βI + A)−1[µ
1/2] g

and
H = 1

2αgT [µ
1/2] B−1[µ

1/2] g

with
|δr |2 = δhT [µ−1] δh ≤ r2

0

where
g = α∇S + C TRT [σ−2] (D −R C h).

(3) Probabilities:
Pr(D | α, c) = (2πc2)−

N/2 det[σ−1] exp
(
(αS(ĥ)− L(ĥ))/c2

)
(det B)−

1/2

and
G = trace((αB)−1A)

where
A = [µ

1/2] C TRT [σ−2] R C [µ
1/2]

and
B = I + A/α.

35

36 CHAPTER 4. ALGORITHMIC DETAILS

For the classic options, G gives the stopping criterion, and Pr(D) enables variables
to be inferred.

(4) Samples from the posterior cloud Pr(h | D):

h = ĥ +
(
c2

α

)1/2

[µ
1/2] B−

1/2r .

(5) Linear features of h :

ρ̂ =
∑

ĥipi = hTp

and

(δρ)2 = c2

α
pT [µ

1/2] B−1[µ
1/2] p.

4.2 Vector coding

The matrix operations which are needed in various parts of the algorithm are

B−1b, bTB−1b, B−
1/2b

and

trace(B−1A), det(B),

where B = I + A/α and A = [µ1/2] C TRT [σ−2] R C [µ1/2].
Direct inversion of B and the evaluation of its determinant each require O(L3) operations. This

would be impractical for large datasets, even if the O(L2) memory locations could be found for the
list of elements. A practical large-scale algorithm can store only vector quantities, and its use of
the transform routines C , C T , R and RT must be restricted to applying them (perhaps several
times) to vectors.

In order to evaluate B−1b, the obvious, indeed only, vector operand is b itself, so that one
becomes restricted to some fairly small n-dimensional subspace spanned by b, A b, A2b, . . . , An−1b.
Within this subspace, a vector yn can be found which maximises

Y = 2 yTn b − yTn B yn.

As n increases, the subspace expands and y becomes less constrained, so that Y increases mono-
tonically. Eventually, when n reaches L or perhaps before, Y reaches its greatest possible value

Y0 ≤ Y1 ≤ Y2 ≤ · · · ≤ Ymax = bTB−1b at y = B−1b.

By construction, the lower limits on Ymax are optimal in terms of the information available in the
given subspace. Although the conjugate gradient algorithm organises this calculation efficiently,
we need to know when to stop it.

For this, we introduce another vector zn in the same subspace which maximises

Z = 2 z TA b − z TB A z .

This calculation too can be organised by conjugate gradients, and we reach another sequence of
optimal lower limits

Z0 ≤ Z1 ≤ Z2 ≤ · · · ≤ Zmax = bTB−1A b

4.2. VECTOR CODING 37

Now
Ymax + Zmax/α = bTB−1(I + A/α) b = bTb,

which is known on entering the calculations. Hence, just as Y0, Y1, Y2, . . . give successively improved
optimal lower limits to Ymax, so do Z0, Z1, Z2, . . . lead to successively improved optimal upper
limits. At any stage, we can write

bTB−1b ∈ [Y−, Y+]

where
Y− = Yn, Y+ = bTb − Zn/α.

We terminate the conjugate gradient calculations when n is large enough that the numerical
uncertainty is sufficiently small:

Y+ − Y− ≤ εY−

where ε is whatever tolerance (say 0.01) which may be desired.
As a technicality, there is no need to perform the calculations of Y and Z independently. Both

use the same base vectors, and they can be merged together. In fact, accuracy is best preserved by
slaving both of them to an underlying “master” conjugate gradient maximisation of

X = 2 xTb − xTA x .

B−
1/2 can be obtained similarly.
The trace and determinant calculations can be carried out with the aid of one or more random

normal vectors r , whose L components are correlated according to

〈r rT 〉 = I .

Consider
Z = rTB−1A r .

This can be evaluated as above, using r as the input vector and obtaining

Z ∈ [Z−, Z+]

where
Z− = Zn, Z+ = α(rT r − Yn).

The expectation over r is
〈Z〉 = 〈 rTB−1A r 〉 = trace(B−1A),

which is one of the quantities (αG) that we need. Moreover, the variance of this estimate is also
available

(dev(Z))2 = 2 trace(B−2A2)
≈ 2 rTB−2A2 r ≈ 2 z Tn A2 zn.

Thus we can write
αG = [Z−, Z+]± dev(Z).

The random variation is additional to the numerical uncertainty caused by terminating the conju-
gate gradient calculation, and is part of the price we must pay for avoiding the direct, expensive
calculation of the trace.

38 CHAPTER 4. ALGORITHMIC DETAILS

Although the error thus induced depends on the random vector r , it will be systematic if the
same r is used repeatedly. Thus, provided the same vector is re-used each iterate, it will not
affect the actual convergence of the maximum entropy calculation, though it will affect the precise
position on the trajectory to which the calculation converges.

This may well not matter much. G is the dimensionless number of good measurements, and
the standard deviation of its estimate turns out to be only about (in fact, less than) G1/2. For large
datasets, with many good measurements, this variation will be relatively small, and unimportant.
In effect, the integrations over the complete cloud which are needed to find G are being performed
by a Monte Carlo exploration, but the space is so large that, paradoxically, a single exploration is
usually sufficient. In any case, the variation can always be reduced, in proportion to the square
root, by averaging the results over several random vectors r .

An extension of this procedure gives the determinant det(B) in parallel with the evaluation of
the trace. The determinant too has its numerical and random uncertainties, so that the evidence
too is computed in the form

Evidence = [P−, P+]± dev(P).

4.3 Data-space algorithm

The hidden-space algorithm outlined in Section 4.1 involves computations with L-dimensional vec-
tors and matrices, ideally with L large to give high resolution. However, any central reconstruction
ĥ maximises Q = αS − L so that ∇Q = 0 . Hence for standard entropy ĥ must be of the form
(exponentiating componentwise)

ĥ = m exp(C TRT [σ−1] w)

for some N -dimensional w , actually equal to α−1[σ−1] (D −R C h). Similar expressions can be
found for the other variants. By using w to define ĥ , memory space is saved when computing
at high resolution, and accuracy improves because ĥ automatically lies within the N -dimensional
subspace of possible solutions. The data-space algorithm, finding and using w , is obtained by
translating the hidden-space steps directly into data space.

(0) Preliminary:
h = m exp(C TRT [σ−1] w) or variant.

(1) Scalars:
S(w) =

∑
(h −m − h log(h/m)) or variant

and
L(w) = 1

2(D −R C h)T [σ−2] (D −R C h).

(2) Iteration:
δw = (βI ′ + A′)−1g ′

and
H = 1

2αg ′TB ′−1A′ g ′

with
|δr |2 = δwTA′ δw ≤ r2

0

where

4.3. DATA-SPACE ALGORITHM 39

g ′ = −αw + [σ−1] (D −R C h)
and

A′ = [σ−1] R C [µ] C TRT [σ−1]
and

B ′ = I ′ + A′/α.

(3) Probabilities:
Pr(D | α, c) = (2πc2)−

N/2 det[σ−1] exp
(
(αS(ĥ)− L(ĥ))/c2

)
(det B ′)−

1/2

and
G = trace((αB ′)−1A′).

For the classic options, G gives the stopping criterion, and Pr(D) enables variables
to be inferred.

(4) Samples from the posterior cloud Pr(h | D):

h = ĥ +
(
c2

α

)1/2

[µ
1/2] B−

1/2r .

(5) Linear features of h :

ρ̂ =
∑

ĥipi = hTp

and

(δρ)2 = c2

α
pT [µ

1/2] B−1[µ
1/2] p.

Part II

Practice

41

Chapter 5

The MemSys5 software package

The MemSys5 package (mnemonic Maximum entropy method System, 5th generation) of Fortran 77

subroutines is designed to converge to the posterior probability cloud Pr(h | D), for a wide variety
of types of data D . Options are available for constant or variable Gaussian noise or Poisson errors,
as well as for different stopping criteria.

The purpose of the major subroutine MEM5 is to perform one iterate of the data-space max-
imum entropy algorithm, initialising a new run if necessary. It updates the regularisation con-
stant α and the Lagrange multipliers w , finds the corresponding central reconstruction ĥ =
m exp(C TRT [σ−1] w) or the appropriate variant, and optionally calculates the overall evidence
Pr(D | α) and the number of good measurements. It also controls progress down the maximum
entropy trajectory towards the desired stopping value.

The purpose of subroutine MOVIE5 is to obtain samples from the posterior probability cloud in
hidden space, optionally correlated with previous samples. From this, the user can display a movie
in which successive frames show a sample reconstruction moving ergodically through the posterior
density (Skilling, Robinson and Gull 1991). This important addition to the MemSys package allows
the user to see whatever variability is present in the results. It also allows quantification of nonlinear
functionals such as a maximum or a median (Charter 1991), simply by accumulating the values of
such quantities over several independent frames.

The purpose of the quantification subroutine MASK5 is to take a user-defined mask p and evaluate
ρ = hTp, returning its mean ρ̂ = ĥTp and its standard deviation δρ. In this way linear features ρ
can be estimated without having to average over MOVIE5 samples.

The hidden distribution h , visible distribution f , data D , multipliers w , and related quantities
used in the algorithm, are stored in areas whose contents are manipulated by the MemSys5 package.
Henceforward in this document, angle brackets 〈 〉 denote an area. MemSys5 itself uses at most 14
areas, but up to 40 can be defined, to allow for extensions and development within the MemSys
framework.

The internal arithmetic is carried out to REAL precision throughout.

43

44 CHAPTER 5. THE MEMSYS5 SOFTWARE PACKAGE

There is, of course, more detail to be understood, but the basic way of using the system is as
follows.

Call MEINIT to initialise the system.

Set up storage areas and data D .

Optionally CALL MEMTRQ to check consistency of transforms.

Repeat . . .
CALL MEM5

. . . until converged to ĥ , with f̂ = C ĥ .

Repeat . . .
CALL MOVIE5

. . . to generate ergodic samples h from Pr(h | D).

Repeat . . .
CALL MASK5

. . . to quantify any desired features ρ = hTp.

Chapter 6

Storage areas

6.1 Area structure

The package works with up to 40 areas, each of which may be held in memory or externally on
disc or elsewhere at the user’s discretion. By convention, areas 〈1〉 to 〈10〉 are hidden-space areas,
each capable of holding a complete hidden distribution of L cells. Similarly, areas 〈11〉 to 〈20〉 are
visible-space areas, each capable of holding a complete visible distribution of M cells. Areas 〈21〉
to 〈30〉 are data-space areas, each capable of holding a complete set of N data. The uses of the
areas are summarised in Table 6.1. Any unused area is available for the user’s own purposes, if
required.

The MemSys5 package uses the working space ST to perform vector operations on the areas.
This working space ST is supplied by the user as an argument to the main routines of the package.
The package requests access to an area by calling the user-supplied subroutine VFETCH before the
operation, and relinquishes access to it by calling the user-supplied subroutine VSTORE when the
operation is complete. There are no restrictions on the storage device or location in which the user
holds an area when it is not being accessed by the package, and the address in ST at which it is
made available to the package may be different on each occasion it is requested. The user can set
the number of elements of an area supplied to the package at any one time (the block size) through
VFETCH.

45

46 CHAPTER 6. STORAGE AREAS

Table 6.1: MemSys5 area usage.

Area Space Use Input/output Notes

〈1〉 H Current ĥ O MEM5

Hidden sample v = ĥ + ∆h O MOVIE5
〈2〉 H Working space for transforms
〈3〉 H Default model m I unless DEF > 0
〈4〉 H Mask p I MASK5

Hidden offset ∆h = α−
1/2c [µ1/2] B−

1/2 r O MOVIE5
〈11〉 V Working space for transforms

Current f̂ = C ĥ O MEM5
Visible sample C v O MOVIE5

〈21〉 D Data D I MEM5
〈22〉 D Accuracies [σ−1] I unless ACC > 0
〈23〉 D Multipliers w I O Not needed as

input for initial
call to MEM5

〈24〉 D Normalised residuals [σ−1] (D − F) O if METHOD(2) = 1
(D − F)/(D + 1)1/2 O if METHOD(2) = 2

〈25〉 D Working space for transforms
〈26〉 D Working space
〈27〉 D Working space
〈28〉 D Working space
〈29〉 D Differential responsivity Needed only if

response is
nonlinear

6.2. INITIALISATION: MEINIT 47

6.2 Initialisation: MEINIT

Before using any of the routines of the package, the user must

CALL MEINIT

This is a compulsory first call, which initialises the system to a defined state. It may also be called
to re-initialise the package completely, erasing the set-up and access to results from the previous
run.

6.3 Area handling and overlaying

The package’s storage handling has been designed to leave as much freedom as possible in the way
that areas may be stored when not being accessed.

All the areas must be kept separate, except for areas 〈2〉, 〈11〉, and 〈25〉. Within the package,
all the transforms C and C T between hidden space and visible space are between areas 〈2〉 and
〈11〉, and the transforms R and RT between visible space and data space are between 〈11〉 and
〈25〉. To the extent that the user’s transforms can be done in place, these three areas may be
overlaid.

The maximum number of areas to which the package will request simultaneous access is four,
in which case one of the areas will always be the transform area 〈25〉. Hence the absolute minimum
required in ST is workspace for four blocks, one for part of each of the accessed areas. If storage is
limited to this, the user must transform directly between his external areas, although the whole of
ST would be available as working space. For convenience, though, transforms are usually performed
in memory within ST wherever possible. Assuming that all the other areas are stored elsewhere, ST
must then be long enough to hold the transform areas, plus workspace for three more blocks. It is,
of course, generally more convenient to store all the areas directly in ST if this can be done.

It is possible to ‘switch out’ one or more observations from the data vector D , by setting the
corresponding element(s) of the accuracies in area 〈22〉 to zero. The system will then run as though
these elements of D were absent. Since area 〈22〉 contains reciprocal standard deviations, setting
an element 1/σk to zero effectively sets the standard deviation of Dk to infinity, and so Dk has no
influence on the calculation.

One or more elements of h can be ‘switched out’, i.e., set to zero, by setting the corresponding
elements of the default model m in area 〈3〉 to zero.

Chapter 7

The vector library

MemSys5 is supplied as two source-code modules, memsys5 with its INCLUDE file, and vector. The
central module memsys5, hereafter referred to as the ‘system’, performs all scalar calculations, all
high-level manipulation of the storage areas and the production of all diagnostics. This module is
independent of any hardware considerations.

All the actual vector arithmetic, and the addressing needed to control it, is handled by the
subroutines in the vector module, comprising the vector library. This means that it is relatively
straightforward to transfer MemSys5 to array processors, parallel systems, or other hardware ar-
chitecture. The system allows areas to be accessed piecemeal in blocks, largely under the user’s
control so that best use can be made of a possibly limited amount of memory. Sequences of calls
to the vector library always form a chain, in which one or more vector operations are performed
on successive blocks of up to four areas at a time (in which extreme case one of the areas is always
the transform area 〈25〉). The following example illustrates a typical sequence of calls. In it, the
contents of 〈23〉 and 〈24〉 are being used to calculate new contents for 〈24〉 and 〈27〉.

Enter vector chain: begin at the start of each area.
Repeat . . .

CALL fetch next block of 〈24〉 (input values needed)
CALL fetch next block of 〈27〉
CALL fetch next block of 〈23〉 (input values needed)

CALL first vector operation on block of 〈23〉,〈24〉,〈27〉
CALL second vector operation on block of 〈23〉,〈24〉,〈27〉

...
CALL last vector operation on block of 〈23〉,〈24〉,〈27〉

CALL store block of 〈23〉
CALL store block of 〈24〉 (output values to be preserved)
CALL store block of 〈27〉 (output values to be preserved)

. . . until the areas are exhausted: exit vector chain.

The system will never mix calls between the different spaces (hidden, visible and data), so that
all the areas in a chain should be of the same length. Every “fetched” area will subsequently be
“stored”, and conversely every area to be “stored” will first be “fetched”. As illustrated, however,
the calls to “fetch” the areas may be in any order, though the calls to “store” them will be in serial
order.

49

50 CHAPTER 7. THE VECTOR LIBRARY

7.1 Area access routines VFETCH and VSTORE

VFETCH and VSTORE control the addressing, and are the only subroutines which require access to
the user’s pointer block COMMON /VPOINT/ which describes the user’s storage structure. Hence, if
the format of /VPOINT/ becomes inappropriate or inadequate, the only subroutines which need to
be changed are VFETCH and VSTORE. As supplied, VFETCH and VSTORE have a rather complicated
form which encodes dynamic control of blocked input/output to external storage outside the ST
array. Dynamic control is in the interests of efficient I/O, but is not essential for proper operation
of the system.

Should the user wish to alter VFETCH and VSTORE, he must adhere to their specifications:

SUBROUTINE VFETCH(ST,J,IOFF,ACTION, KCORE,LENGTH, MORE)
REAL ST(0:*) arithmetic workspace array
INTEGER J Input: area number
INTEGER IOFF Input: first element of current block
LOGICAL ACTION Input: contents to be read?
INTEGER KCORE Output: start address of current block
INTEGER LENGTH Output: number of elements in current block
INTEGER MORE Input: start of new chain?

SUBROUTINE VSTORE(ST,J,IOFF,ACTION, KCORE,LENGTH, MORE)
REAL ST(0:*) arithmetic workspace array
INTEGER J Input: area number
INTEGER IOFF Input: first element of current block
LOGICAL ACTION Input: contents to be preserved?
INTEGER KCORE Input: start address of current block
INTEGER LENGTH Input: number of elements in current block
INTEGER MORE Output: any more elements?

VFETCH enables access to a single block of area 〈J〉, starting at element IOFF. This block may
comprise either all or just part of the area. IOFF is controlled by the system. It will be zero for
the first element of 〈J〉, and will thereafter be incremented by LENGTH until all the elements of 〈J〉
have been accessed. VFETCH must return a storage address KCORE pointing to where the block may
thereafter be found in ST. VFETCH must also return LENGTH, being the number of elements in the
block. Thus on return from VFETCH, elements IOFF, . . . , IOFF + LENGTH− 1 of 〈J〉 are to be found
in ST(KCORE), . . . , ST(KCORE+LENGTH−1). Within a particular loop of a vector chain, the system
will keep supplying the same offset IOFF, and VFETCH must keep returning the same LENGTH.

If ACTION is .TRUE. then the system needs the current block of 〈J〉 for input, but if ACTION is
.FALSE. the current values values are not needed. MORE is a status flag. On entry to each vector
chain, the system will supply MORE = 0, but (subject to a restriction on its value as an output from
VSTORE) the user is then free to use this flag for his own purposes.

VSTORE relinquishes access to a previously “fetched” block of ST. For each area number J, the
offset IOFF, start address KCORE and length LENGTH will all be the same as on return from the
previous VFETCH call. If ACTION is .TRUE., then the contents of the block have been altered and
must be preserved, but if ACTION is .FALSE. any new values need not be preserved. The system
will, however, assume that any old values which were unchanged by the vector calls will remain in
place. A call to VSTORE with ACTION = .FALSE. does not mean that the old values of the block
may be altered. On exit from the final VSTORE in a loop, the system will interrogate the value of

7.1. AREA ACCESS ROUTINES VFETCH AND VSTORE 51

MORE. A zero value of MORE signals the end of a chain to the system, and VSTORE must provide this
only at the correct time.

After the system has relinquished access to a block with VSTORE, it will not attempt to access
it again without first enabling it with VFETCH, so the relevant part of ST may be used for other
purposes if 〈J〉 is not being permanently stored there.

Although it is possible to include considerable sophistication in VFETCH and VSTORE if hardware
considerations demand it, the routines do not have to be complicated. If all the areas are held
permanently at fixed locations in ST, the following pair suffices.

SUBROUTINE VFETCH(ST,J,IOFF,ACTION, KCORE,LENGTH, MORE)
REAL ST(0:*)
LOGICAL ACTION
COMMON /VPOINT/ KL(40),KB(40) Area lengths KL and base addresses KB
KCORE=KB(J)
LENGTH=KL(J)
END

SUBROUTINE VSTORE(ST,J,IOFF,ACTION, KCORE,LENGTH, MORE)
REAL ST(0:*)
LOGICAL ACTION
END

For the implementations of VFETCH and VSTORE supplied in vector, the COMMON block /VPOINT/
is as follows:

COMMON /VPOINT/ KL(40),KB(40),KA(40),KWORK,LWORK,LENREC

In this scheme, the array KA is used to indicate whether area 〈J〉 is held in the ST array in
memory (KA(J) = 0) or on disc (KA(J) = 1). The array KB again holds start addresses for the
areas. If area 〈J〉 is held in ST, then KB(J) holds the start address in ST, as above. If area 〈J〉 is
held on disc, then KB(J) holds the start address on a direct-access file (or some equivalent) with a
record length of LENREC REALs. In this case, the start address is encoded in KB(J) as an element
of a (suitably large) imaginary array, with every area starting at the beginning of a new record. If
any areas are stored on disc, then contiguous workspace is required in ST for disc buffers, in which
the package can access the requested portions of these areas. The start address of this workspace
must be supplied in KWORK, and its length in LWORK. The minimum amount of workspace required
in ST is discussed in Section 6.3 on page 47.

The following code fragment illustrates how /VPOINT/ might be set up:

COMMON /VPOINT/ KL(40),KB(40),KA(40),KWORK,LWORK,LENREC
...

LENREC = record length (in REALs) for disc I/O, typically 1024 elements
DO 1 for each area 〈J〉 used

IF (〈J〉 held in ST) THEN
KA(J) = 0
KB(J) = start address within ST

ELSEIF (〈J〉 held on disc) THEN
KA(J) = 1
KB(J) = start address on disc

52 CHAPTER 7. THE VECTOR LIBRARY

ENDIF
KL(J) = length of 〈J〉

1 CONTINUE
KWORK = start of disc buffer area in ST
LWORK = length of disc buffer area in ST
OPEN(UNIT = lun, ACCESS = ’DIRECT’, . . .) if any areas are on disc

...
Proceed to MemSys5 calls, etc.

7.2 Disc-handling routines UFETCH and USTORE

The implementations of VFETCH and VSTORE in vector call the user-supplied routines UFETCH and
USTORE to perform disc I/O.

SUBROUTINE UFETCH(ST,KCORE,KDISC,LENGTH)
REAL ST(0:*)

and

SUBROUTINE USTORE(ST,KCORE,KDISC,LENGTH)
REAL ST(0:*)

should read or write a block of LENGTH REALs, starting at address KCORE in ST, from or to disc,
starting at disc address KDISC. The disc address KDISC will always correspond to the start of a
disc record. The number of elements LENGTH to be transferred will not necessarily be an integer
multiple of the record length LENREC, but incomplete records will be read or written only at the
end of a storage area.

Examples of these routines are as follows:

SUBROUTINE UFETCH(ST,KCORE,KDISC,LENGTH)
REAL ST(0:*)
COMMON /VPOINT/ KL(40),KB(40),KA(40),KWORK,LWORK,LENREC
DO 1 I=0,(LENGTH-1)/LENREC

READ (UNIT = lun, REC = 1+KDISC/LENREC+I)
* (ST(KCORE+K),K=I*LENREC,MIN((I+1)*LENREC-1,LENGTH))
1 CONTINUE

END

and

SUBROUTINE USTORE(ST,KCORE,KDISC,LENGTH)
REAL ST(0:*)
COMMON /VPOINT/ KL(40),KB(40),KA(40),KWORK,LWORK,LENREC
DO 1 I=0,(LENGTH-1)/LENREC

WRITE (UNIT = lun, REC = 1+KDISC/LENREC+I)
* (ST(KCORE+K),K=I*LENREC,MIN((I+1)*LENREC-1,LENGTH))
1 CONTINUE
END

7.3. ARITHMETICAL VECTOR ROUTINES 53

7.3 Arithmetical vector routines

All the vector arithmetic controlled by the package, apart from the transforms, is performed by the
arithmetic routines in the vector library. Only these routines have to be replaced if the arithmetic
is to be performed somewhere other than in the array ST in memory, on an array processor or such
hardware.

Several of these arithmetical routines are simple, and commonly available in external libraries
supplied with array processing hardware.

VFILL fills a block with a scalar.

VMOV moves a block to another location.

VSWAP interchanges two blocks.

VMUL multiplies two blocks.

VDIV divides two blocks. No denominator will be zero.

VLOG returns the logarithm of a strictly positive block.

VSQRT returns the square root of a non-negative block.

VSIGN returns the signs (+1.0 or −1.0) of a block.

VSADD adds a scalar to a block.

VSMUL multiplies a block by a scalar.

VSMULA multiplies a block by a scalar, then adds a second block.

VSUM returns the sum of the elements of a block. As supplied, VSUM uses a butterfly pattern
of addition to preserve full arithmetical accuracy. Whilst this can be useful on occasion,
especially with large-scale problems where rounding errors might otherwise accumulate, it is
seldom essential.

VDOT returns the scalar product of two blocks. As supplied, VDOT, like VSUM, uses a butterfly pattern
of addition to preserve full arithmetical accuracy.

The ‘VRAND’ group of routines is more specific to MemSys5, and might need special coding in
terms of external library routines. Such coding might involve extra “dummy” buffers to hold blocks
of intermediate results. Such buffers could safely overlay areas 〈27〉 and 〈28〉.

VRAND fills a block with samples from the unit normal distribution.
VRAND0 initialises the generator with an integer seed.
VRAND1 saves the generator state.
VRAND2 restores the generator state.

As supplied, the generator state is stored in

COMMON /VRANDC/ P1,P2,P3,P4,P5,P6

54 CHAPTER 7. THE VECTOR LIBRARY

Finally, the last arithmetical routine VMEMX sets any nonlinear corrections to the responsivity
transform (METHOD(3) = 2). As supplied, this routine calls the user’s SUBROUTINE UMEMX for
each element of the area. For efficient vectorisation, the code for UMEMX should be pulled into an
appropriately recoded version of VMEMX.

VMEMX sets the nonlinear option.

Chapter 8

Transform routines

8.1 Transform subroutines OPUS, TROPUS, and UMEMX

The user must supply two subroutines OPUS and TROPUS which transform between visible space and
data space.

SUBROUTINE OPUS(ST,JM,JN)

should apply R to the visible-space distribution from area 〈JM〉 to calculate the corresponding
data-space quantities

Fk =
M∑
j=1

Rkjfj or F = R f

and write them to data area 〈JN〉. Areas 〈JM〉 and 〈JN〉 can be, and usually are, of different length.

SUBROUTINE TROPUS(ST,JN,JM)

should apply RT to data-space quantities from area 〈JN〉 to calculate the corresponding visible-space
quantities

fj =
N∑
k=1

RkjFk or f = RTF

and write them to area 〈JM〉.
In these formulae, R is the response function of the apparatus producing the data, which is

assumed constant, as for a linear experiment giving

D = R f ± σ

The package always calls OPUS and TROPUS with JM = 11 and JN = 25, but the explicit arguments
remain in place in order to preserve flexibility and compatibility with earlier maximum entropy
programs.

Clearly it will usually be convenient to have both area 〈JM〉 and area 〈JN〉 in ST, and possibly
overlaid if the transform coding allows it, so that a simple OPUS routine could be constructed as
follows.

SUBROUTINE OPUS(ST,JM,JN)
REAL ST(0:*)

55

56 CHAPTER 8. TRANSFORM ROUTINES

COMMON /VPOINT/ KL(40),KB(40)
CALL VOPUS(ST,KB(JM),KB(JN),KL(JM),KL(JN))
END

SUBROUTINE VOPUS(ST,JU,JV,M,N)
REAL ST(0:*)

Matrix multiply
DO 2 K = 0,N-1

X = 0.0
DO 1 J = 0,M-1
X = X + TransformMatrix(K,J) * ST(JU+J)

1 CONTINUE
ST(JV+K) = X

2 CONTINUE
END

The routine TROPUS would be similar

SUBROUTINE TROPUS(ST,JN,JM)
REAL ST(0:*)
COMMON /VPOINT/ KL(40),KB(40)
CALL VTROP(ST,KB(JN),KB(JM),KL(JN),KL(JM))
END

SUBROUTINE VTROP(ST,JV,JU,N,M)
REAL ST(0:*)

Transpose matrix multiply
DO 1 J = 0,M-1

X = 0.0
DO 2 K = 0,N-1

X = X + TransformMatrix(K,J) * ST(JV+K)
1 CONTINUE

ST(JU+J) = X
2 CONTINUE
END

These examples assume a storage scheme similar to the one suggested in Section 7.1 on page 51,
in which the lengths and start addresses of areas in memory are held in KL and KB, and the elements
are stored sequentially. Any quantities other than lengths and start addresses must be passed to
the transform routines in a separate COMMON block.

Nonlinearities of the type
Dk = Φ(Fk)± σk

where Φ is some known and reasonably well-behaved function can be tolerated by the algorithm,
provided that area 〈29〉 is defined, and that a subroutine UMEMX is supplied which calculates the
values of Φ and its derivative for a given value of Fk.

SUBROUTINE UMEMX(F,PHI,DPHI)
REAL F,PHI,DPHI

should set PHI = Φ(F) and DPHI = dΦ(F)/dF . The package always calls UMEMX with its three
arguments at different locations.

8.2. INTRINSIC CORRELATION FUNCTION ROUTINES ICF AND TRICF 57

8.2 Intrinsic correlation function routines ICF and TRICF

The user is also required to supply two routines ICF and TRICF which are analogous to OPUS and
TROPUS.

SUBROUTINE ICF(ST,JL,JM)

should apply the ICF operator C to the hidden-space distribution from area 〈JL〉 to calculate the
corresponding visible-space quantities

fj =
L∑
i=1

Cjihi or f = C h

and write them to visible area 〈JM〉.
Likewise,

SUBROUTINE TRICF(ST,JM,JL)

should apply C T to visible-space quantities from area 〈JM〉 to calculate the corresponding hidden-
space quantities

hi =
M∑
j=1

Cjifj or h = C T f

and place the result in hidden-space area 〈JL〉. There is no need for 〈JL〉 and 〈JM〉 to be of equal
length for these routines.

Within the MemSys5 package, ICF and TRICF are always called with JL = 2 and JM = 11.
Examples of ICF and TRICF are supplied with the MemSys5 package. For the user’s convenience,

these can operate in-place.

Chapter 9

Diagnostics and utilities

9.1 Diagnostics routine UINFO

The MemSys5 package itself performs no I/O, but instead directs all its diagnostic output through
calls to the user-supplied subroutine UINFO, which should be as follows:

SUBROUTINE UINFO(STRING,MLEVEL)
INTEGER MLEVEL
CHARACTER*(*) STRING

The character string STRING contains the diagnostic message, and MLEVEL is the diagnostic type,
as shown in Table 9.1. Diagnostics in the internal box (MLEVEL = 10) are generally found to be the
most useful.

Table 9.1: Coding of INFO calls with MLEVEL.

Type MLEVEL Interpretation

Progress 1 Names of main routines as they are called

2 Flowchart of area input/output

Numerical 10 Descriptor with triple equals sign ===

20 Internal technical

An internally documented example of UINFO is supplied with the MemSys5 package.
When UINFO is called with MLEVEL = 1, STRING will contain the name of one of the main internal

routines of the package, together with any area numbers which that routine takes as arguments.
For example,

MeCopy(25,21)

indicates that MECOPY has been called to copy the contents of area 〈25〉 to 〈21〉.

59

60 CHAPTER 9. DIAGNOSTICS AND UTILITIES

When UINFO is called with MLEVEL = 2, STRING will contain one line of the flowchart showing
area usage by the package in the vector operation just finished. It is often helpful to read this
in conjunction with the preceding MLEVEL = 1 call, which indicates the subroutine involved. For
example, the flowchart string following the above call was:

.......... W...R.....

This represents the status of each of the package’s 40 areas, arranged in the four groups of ten:
〈1〉 to 〈10〉, 〈11〉 to 〈20〉, 〈21〉 to 〈30〉 and 〈31〉 to 〈40〉. The area is represented by a dot ‘.’ if
no operation has occurred. If the area has been read, then ‘R’ appears. In the above example,
MECOPY has read the contents of area 〈25〉. If the area has been written to, then ‘W’ appears. In this
example, MECOPY has written to area 〈21〉. If the contents of the area have been read and written
in the same vector operation, then ‘U’ (Update) appears. Finally, a semicolon ‘:’ would denote an
area used as temporary workspace.

UINFO calls with MLEVEL = 10 contain the main scalars calculated by MEM5, for example

Entropy === -3.3419E+03 Test === .0004 Chisq === 3.3359E+01

These values are returned also in the output arguments of MEM5, in this case S, TEST and CHISQ.
UINFO calls with MLEVEL = 20 contain detailed technical diagnostic information about the

package’s internal functioning. This will generally be of little concern to the user.

9.2 Transform checking subroutine MEMTRQ

A common error in programming transform routines is inconsistency between ICF and TRICF, or
OPUS and TROPUS, which arises if these routines do not represent each other’s transpose. Matrices
Q and T are each other’s transpose if and only if

uTT v = vTQ u for all vectors u , v .

Subroutine MEMTRQ (acronym MEM TRopus Query) enables this relationship to be checked for indi-
vidual pairs of vectors u , v in areas 〈1〉 and 〈26〉 respectively.

CALL MEMTRQ(ST,ISEED,ERR)

If the INTEGER ISEED is greater than zero, then MEMTRQ will use the package’s internal random
generator to set up areas 〈1〉 and 〈26〉. If ISEED is less than or equal to zero, MEMTRQ will use 〈1〉
and 〈26〉 as supplied by the user.

The routine will return the dimensionless REAL ERR:

ERR =
|uTy − vTx |

(|u | |y | |v | |x |)1/2

where
x = Opus (ICF (u)) and y = TrICF (Tropus (v)) .

If OPUS/TROPUS and ICF/TRICF have been consistently coded, the value of ERR should be ap-
propriate to the rounding errors expected in the transforms. Most inconsistencies show up as
considerably larger errors. Sometimes, addressing errors show up only after a second call to a
routine, so that a repeated call to MEMTRQ is recommended.

Of course, MEMTRQ cannot detect all errors. Subroutines can be consistent, but still wrong.

9.3. SAVE AND RESTORE UTILITY: MESAVE AND MEREST 61

9.3 Save and restore utility: MESAVE and MEREST

This facility allows the user to stop a MemSys5 run after any iterate, and preserve outside the
package the information necessary to restart the run from exactly the stage at which it was halted.
It can also be used, for example, to store the information from a converged MEM5 run so that one
of the other routines, such as MOVIE5 or MASK5, can be run from a separate program.

To save the information from a run, the user should

CALL MESAVE

This will cause a call to the user-supplied routine USAVE which should be as follows:

SUBROUTINE USAVE(INTS,NINTS,REALS,NREALS)
INTEGER NINTS,NREALS,INTS(NINTS)
REAL REALS(NREALS)

The user is then required to save the contents of the arrays INTS, and REALS externally, perhaps
on disc. The values of the input arguments NINTS and NREALS will be approximately 9 and 33
respectively, depending on the MemSys5 version being used. The vector storage areas 〈3〉 (if DEF ≤
0), 〈21〉, 〈22〉 (if Poisson or ACC ≤ 0), 〈23〉 (and 〈29〉 if using nonlinear response) must also be
preserved at this stage. The user will also need to save his storage addressing information in
/VPOINT/, as well as any other variables passed in COMMON blocks to the transform routines. A call
to MESAVE during a run has no effect on that run, which may be continued if desired.

In order to restart the package, the user should

CALL MEREST

This will result in a call to the user-supplied routine

SUBROUTINE UREST(INTS,NINTS,REALS,NREALS)
INTEGER NINTS,NREALS,INTS(NINTS)
REAL REALS(NREALS)

in which NINTS and NREALS are input arguments. The user should restore to the arrays INTS and
REALS the values supplied by USAVE. The contents of the vector storage areas listed above must
also be restored, along with /VPOINT/ and any other COMMON blocks.

Examples of USAVE and UREST are supplied with the package.

9.4 Error messages

All the errors detected within the MemSys5 package are deemed to be fatal, and so if an error is
encountered the package will STOP with one of the following error messages:

Illegal MEMRUN value

MEMRUN is an INTEGER switch for initialisation or continuation of a MEM5 run, and must be set
to a value between 1 and 4 inclusive when calling MEM5. See page 67.

Illegal METHOD(0) value

METHOD(0) is an INTEGER which determines the stopping criterion, and must be set to a value
between 1 and 4 inclusive when calling MEMSET. See page 65.

62 CHAPTER 9. DIAGNOSTICS AND UTILITIES

Illegal METHOD(1) value

METHOD(1) is an INTEGER which determines the type of entropy to be used, and must be set
to a value between 1 and 5 inclusive when calling MEMSET. See page 65.

Illegal METHOD(2) value

METHOD(2) is an INTEGER which determines the type of likelihood (Gaussian or Poisson) to
be used, and must be set to either 1 or 2 before calling MEMSET. See page 65.

Illegal METHOD(3) value

METHOD(3) is an INTEGER which determines the type of response (linear or nonlinear) to be
used, and must be set to either 1 or 2 before calling MEMSET. See page 66.

Method incompatible with Poisson statistics

Poisson likelihood cannot be used with automatic noise scaling.

Illegal NRAND value

NRAND is an INTEGER which sets the number of random vectors used to calculate G and
Evidence for the classic maximum entropy stopping criteria. If one of these criteria is used,
NRAND must be set greater than zero before calling MEMSET. See page 66.

Illegal RATE value

RATE is a REAL distance limit for a MEM5 iterate. It must be set greater than 0.0 before calling
MEMSET. See page 66.

Illegal AIM value

AIM is the required REAL value of the stopping criterion. It must be set greater than or equal
to 0.0 before calling MEMSET. See page 66.

Illegal UTOL value

UTOL is the dimensionless REAL tolerance demanded of various computations. It must be set
between 0.0 and 1.0 inclusive before calling MEMSET. See page 66.

Illegal area number

MemSys storage areas are numbered from 1 to 40 inclusive. See page 45.

TOLerance determination failed - see MEINIT source code

The package attempts to estimate the computer’s arithmetic tolerance TOL, i.e., the smallest
positive number for which (1.0+TOL) .GT. 1.0 (or (1.0D0+TOL) .GT. 1.0D0 for DOUBLE
PRECISION) is .TRUE., in MEINIT. If this calculation fails, then TOL may be set explicitly by
editing the source code in MEINIT, for example TOL = 1.0E-7 for REAL or TOL = 1.0D-16 for
DOUBLE PRECISION. The exact value is not critical.

MEVRND needs separate output and work areas

When generating correlated random vectors, MEVRND requires an area as workspace. This area
must not be the same one as the output area. This error will not arise from the MemSys5
package’s use of the routine.

In addition the following errors are detected by the storage-handling routines:

9.5. MISCELLANEOUS SUBROUTINES 63

Inconsistent lengths

All the areas involved in a vector operation must be of the same length.

Not enough space for buffers

If areas are stored outside the workspace array ST, then LWORK must be large enough to allow
temporary buffers to be set up in ST. See page 51.

Stack overflow

The maximum number of buffers in the workspace array ST which can be used simultaneously
is four, and requests to VFETCH for further buffers will cause this error. It will not arise from
the MemSys5 package’s use of this routine. See page 51.

Stack underflow

This indicates an error in the use of the storage-handling routines, such as a call to VSTORE
which was not preceded by a corresponding call to VFETCH. This error will not arise from the
MemSys5 package’s use of these routines. See page 51.

9.5 Miscellaneous subroutines

MECOPY and MESWAP

The user may find the following routines useful for copying data from one area to another and
interchanging the contents of two areas.

CALL MECOPY(ST,J,K)

will copy the contents of area 〈J〉 to 〈K〉. If J = K, then no operation occurs. A common use of
this facility is for loading an externally-stored area. The values may easily be read into a transform
area held in memory in ST, and then copied to a less accessible destination area with MECOPY. Thus
the data file could be read into 〈25〉, before copying it to 〈21〉 which might be stored on disc.

CALL MESWAP(ST,J,K)

will interchange the contents of areas 〈J〉 and 〈K〉. If J = K, then no operation occurs. MESWAP can be
used for diagnostic purposes, swapping a disc area into memory for inspection, before returning it
non-destructively to disc. The MemSys5 package itself, however, makes no use of any SWAP routines.

MEMICF and MTRICF

CALL MEMICF(ST,JL,JM)

will apply the ICF operator C to 〈JL〉, putting the result in 〈JM〉. The routine uses the standard
transform areas 〈2〉 and 〈11〉 as workspace. This enables a hidden-space area to be viewed in visible
space. Conversely

CALL MTRICF(ST,JM,JL)

will apply C T to 〈JM〉, putting the result in 〈JL〉, again using 〈2〉 and 〈11〉 as workspace.

Chapter 10

Specifications of the major
subroutines

10.1 MEMSET arguments

The MemSys control variables are set by

CALL MEMSET(METHOD,NRAND,ISEED,AIM,RATE,DEF,ACC,UTOL)

which must be called before MEM5. The package’s internal random generator is also re-initialised
by every MEMSET call. All the arguments are input variables. In accordance with Fortran typing,
METHOD, NRAND and ISEED are INTEGERs, and the other arguments are REALs.

Input variables should be set as follows:

METHOD is an INTEGER array for setting options, encoded as follows:

METHOD(0) sets the stopping criterion:

1 Classic maximum entropy

2 Classic automatic, with noise scaling

3 Ad hoc, α fixed and specified by AIM

4 Historic ‘χ2 = N ’ maximum entropy

METHOD(1) sets the type of entropy:

1 Standard entropy

2 Positive/negative entropy

3 Fermi–Dirac entropy

4 Quadratic ‘entropy’

5 Standard entropy with
∑
i hi =

∑
imi.

METHOD(2) sets the type of noise:

1 Gaussian statistics

2 Poisson statistics

INTEGER

65

66 CHAPTER 10. SPECIFICATIONS OF THE MAJOR SUBROUTINES

METHOD(3) allows some nonlinearity

1 response is linear in h

2 response is nonlinear, given by SUBROUTINE UMEMX

NRAND is the number of random vectors to be used to calculate the Evidence.
NRAND is needed for the “classic” options METHOD(0) = 1 and
METHOD(0) = 2, and is normally set to 1.

INTEGER,
> 0 if
used

ISEED is the seed for the internal pseudo-random number generator, which
is re-initialised by every MEMSET call.
ISEED is needed for the “classic” options METHOD(0) = 1 and
METHOD(0) = 2, and is normally not changed between iterates.

INTEGER

AIM is the required value of the stopping criterion 1/Ω.
For “classic” and “historic” options METHOD(0) = 1, 2, and 4,
AIM ought to be set to 1.0. When setting α explicitly (“ad hoc”
METHOD(0) = 3), AIM is the required value of α. In all cases, setting
AIM to a smaller value forces the algorithm to proceed further down
the trajectory towards fitting the data more closely.

REAL
≥ 0.0

RATE is a dimensionless distance limit.
RATE gives a conservative upper bound, normally set to a value of
order 1.0, to the trust region radius r0 = RATE× (trace[µ])1/2.

REAL
> 0.0

DEF gives the default level.
If DEF > 0.0, then mi = DEF (or mi/(1−mi) = DEF for Fermi–Dirac
entropy) for i = 1, 2, . . . , L. Otherwise, m (or m/(1 − m) for
Fermi–Dirac) is assumed to be set up in area 〈3〉. Individual values
of mi must be positive or zero.

REAL

ACC gives the accuracies, for Gaussian likelihood only.
If ACC > 0.0, then 1/σk = ACC for k = 1, 2, . . . , N . Otherwise, σ−1

is assumed to be set up in area 〈22〉. Individual values of 1/σk must
be positive or zero.

REAL

UTOL is a dimensionless tolerance.
UTOL defines the accuracy demanded of the intermediate conjugate
gradient results, and of the overlap between the computed and true
probability clouds. UTOL is normally set about 0.1, or less for higher
precision.

REAL
between
0.0 and

1.0

The current values of the variables may be recovered by

CALL MEMGET(METHOD,NRAND,ISEED,AIM,RATE,DEF,ACC,UTOL)

where the types and dimensions of each of the arguments are as for MEMSET.

10.2 MEM5 arguments

The main maximum entropy routine MEM5 is called by

10.2. MEM5 ARGUMENTS 67

CALL MEM5(ST,MEMRUN,
* S,TEST,CHISQ,SCALE,PLOW,PHIGH,PDEV,
* GLOW,GHIGH,GDEV,OMEGA,ALPHA,ISTAT,NTRANS)

The first two arguments are input variables, and the rest are output diagnostics (none of which
needs to be preserved between iterates). In accordance with Fortran typing, MEMRUN, ISTAT and
NTRANS are INTEGERs, and the other arguments are REALs. Each call may involve up to a few tens
of transforms, depending on the difficulty of the problem.

The input arguments are as follows:

ST is the vector arithmetic workspace. REAL

MEMRUN is a switch for initialisation or continuation:

1 initialises a new run, starting from h = m .

Enter with contents of 〈21〉.

2 continues the previous run.

Enter with contents of 〈21〉, 〈23〉.

3 restarts the previous run with different METHOD.

Enter with contents of 〈21〉, 〈23〉.

4 finds diagnostics only.

The arguments S, TEST, CHISQ, SCALE, OMEGA (and PLOW, PHIGH,
PDEV, GLOW, GHIGH, GDEV if appropriate) are returned for the
current w . The corresponding h and f are regenerated in ar-
eas 〈1〉 and 〈11〉 respectively. The argument ALPHA will be
set to its current value, and the components code2 (distance
limit), code3 (change in ALPHA) and code5 (cloud mismatch ac-
curacy) of ISTAT will be set to zero. The remaining components
of ISTAT will be set according to the diagnostics calculated.
The total number of transforms applied since the last call with
MEMRUN = 1 will be returned in NTRANS.

Enter with contents of 〈21〉, 〈23〉.

In all cases, area 〈3〉 must also be set up by the user if DEF ≤ 0.
For Gaussian errors, area 〈22〉 must be set up by the user if ACC ≤ 0.
For Poisson likelihood, 〈22〉 must be provided but its contents will
be supplied and manipulated by the package.
For nonlinear response, 〈29〉 must be provided, but its contents will
be supplied and manipulated by the package.
Areas 〈3〉, 〈22〉 and 〈29〉 must be preserved between iterates if they
are in use.

INTEGER

Output arguments are interpreted as follows:

S is the entropy of the input h . REAL
≤ 0.0

68 CHAPTER 10. SPECIFICATIONS OF THE MAJOR SUBROUTINES

TEST is 1− cos θ for the input h .
θ is the angle between the gradients of entropy and χ2. TEST is 0 on
the trajectory and less than 1 whenever the angle is acute.

REAL
between
0.0 and

2.0

CHISQ is 2L (equal to χ2 for Gaussian errors) for the input h .
If the noise is being rescaled (METHOD(0) = 2), CHISQ incorporates
this re-scaling, and at the end of the run will equal the number of
“bad” measurements.

REAL
≥ 0.0

SCALE is c, the scaling factor for the noise (classic automatic only).
SCALE multiplies the initial estimates of the noise standard deviations
by c, and will be 1.0 if the noise is not being rescaled (METHOD(0) 6=
2).

REAL
> 0.0

PLOW is the numerical lower limit on loge Pr(D | α) for the input h (classic
options only).
This value incorporates any rescaling of the noise.

REAL

PHIGH is the numerical upper limit on loge Pr(D | α) for for the input h
(classic options only).
This value incorporates any rescaling of the noise.

REAL

PDEV is the random vector standard deviation of loge Pr(D | α) for the
input h (classic options only).
This value incorporates any rescaling of the noise.

REAL
≥ 0.0

GLOW is the numerical lower limit on G, the number of “good” measure-
ments for the input h (classic options only).

REAL
≥ 0.0

GHIGH is the numerical upper limit on G, the number of “good” measure-
ments for the input h (classic options only).

REAL
≥ 0.0

GDEV is the random vector standard devation of G, the number of “good”
measurements for the input h (classic options only).

REAL
≥ 0.0

OMEGA is Ω × AIM, the rescaled stopping criterion for the input h . (Note
the distinction between the MEM5 argument OMEGA and the algebraic
quantity Ω.)
OMEGA should rise close to 1.0 at the end of the run.

REAL
≥ 0.0

ALPHA is α, the regularisation constant used for the new w . REAL
> 0.0

10.3. MOVIE5 ARGUMENTS 69

ISTAT is a return code.
ISTAT = 0 indicates that the run has successfully ended to within
the desired tolerance UTOL. Exceptionally, this occurs immediately if
OMEGA ≥ 1.0 on setup, when the routine will return with h = m , and
the following diagnostics defined: S, TEST, CHISQ, SCALE, OMEGA (and
PLOW, PHIGH, PDEV, GLOW, GHIGH, GDEV if appropriate) for h = m .
The argument ALPHA will be undefined.
Otherwise,

ISTAT = 64× code6 + 32× code5 + 16× code4 +
8× code3 + 4× code2 + 2× code1 +

code0.

For each of the binary components code0 to code6 a value of zero
denotes ‘acceptable’ or ‘no change’, and a value of one denotes the
opposite. Values of zero correspond to the following for each of the
individual components:

code0 H cloud mismatch is less than UTOL×G
code1 OMEGA is within UTOL of unity
code2 β distance limit not invoked for ALPHA
code3 ALPHA not changed
code4 TEST ≤ 1
code5 H cloud mismatch was found to within UTOL×H
code6 G ‘good’ degrees of freedom found to within

UTOL×G

INTEGER
≥ 0

NTRANS is the number of transforms (calls to ICF/OPUS or TRICF/TROPUS)
performed within the package since the last call to MEM5 with
MEMRUN = 1.

INTEGER
> 0

On each return from MEM5 the new hidden and visible distributions h and f will be in areas 〈1〉
and 〈11〉 respectively.

Note that the probabilistic quantities PLOW, PHIGH, PDEV, GLOW, GHIGH, GDEV, SCALE, and the
return code code6, are calculated only for the “classic” options METHOD(0) = 1 and METHOD(0) = 2.
Otherwise, they are returned with standard harmless values PLOW = PHIGH = PDEV = 0.0, GLOW =
GHIGH = GDEV = 0.0, and SCALE = 1.0, code6 = 0.

10.3 MOVIE5 arguments

The random-sample routine MOVIE5 is called by

CALL MOVIE5(ST,NCORR,KSTAT,NTRANS)

In accordance with Fortran typing the arguments NCORR, KSTAT and NTRANS are INTEGERs.
MOVIE5 is designed to be called after MEM5 has converged, and each call is likely to be about as
expensive as an iterate of MEM5.

If NCORR ≤ 0 the routine will use whatever vector r is supplied in area 〈4〉 as input, otherwise the
routine itself will set up a random vector r , with optional correlation with previous such vectors.
The multipliers w in area 〈23〉 must be retained from the preceding MEM5 run, together with 〈3〉

70 CHAPTER 10. SPECIFICATIONS OF THE MAJOR SUBROUTINES

for the model (if DEF ≤ 0.0), 〈22〉 for the accuracies (if ACC ≤ 0.0 or METHOD(2) = 2), and the
nonlinear area 〈29〉 (if METHOD(3) = 2).

On return, 〈4〉 will contain a vector

∆h =
c

α
1/2

[µ
1/2] B−

1/2r ,

〈1〉 will contain v = ĥ + ∆h and 〈11〉 will contain C v . If r was a random vector, v will be
a random sample from the hidden posterior probability cloud and C v will be the corresponding
sample from the visible posterior cloud.

The variables are interpreted as follows:

ST is the vector arithmetic workspace. REAL

NCORR determines the random vector r used as input.
If NCORR ≤ 0 the routine will use the user-supplied vector in area
〈4〉 as input, otherwise the routine itself will set up r , with optional
correlation with previous random vectors. If NCORR = 1, r will be
uncorrelated with previous vectors, but if NCORR > 1, then r will
be correlated with them as follows: during several successive calls
to the routine with the same value of NCORR (greater than zero),
let the mth and m′th vectors be r(m)

i (i = 0, . . . , L − 1) and r
(m′)
i

(i = 0, . . . , L−1). All values are individually from N(0, 1), but have
covariance structure

〈r(m)
i r

(m′)
i′ 〉 =

{
max(1− |m−m′|/NCORR, 0), if i = i′;
0, if i 6= i′.

For example, NCORR = 3 gives (for each i = i′) covariance

〈r(m)r(m′)〉 = 1
3

3 2 1 0 0
2 3 2 1 0
1 2 3 2 1
0 1 2 3 2
0 0 1 2 3

between the first five samples. NCORR = 1 would have given the
uncorrelated identity.

INTEGER

KSTAT is the return code of evaluation of the offset vector ∆h .
On writing

KSTAT = 2× code1 + code0,

then for each of the binary components code0 and code1 a value of
zero denotes ‘acceptable’, and a value of one denotes the opposite.
Values of zero correspond to the following for each of the individual
components:

code0 conjugate gradient converged successfully
code1 no inconsistency detected in calculation of ∆h .

INTEGER
≥ 0

10.4. MASK5 ARGUMENTS 71

NTRANS is the number of transforms (calls to ICF/OPUS or TRICF/TROPUS)
performed within the package since the last call to MEM5 with
MEMRUN = 1.

INTEGER
> 0

10.4 MASK5 arguments

The inference routine MASK5 is called by

CALL MASK5(ST,AMEAN,ERRLO,ERRHI,JSTAT,NTRANS)

The arguments (apart from ST) are all output variables. In accordance with Fortran typing,
JSTAT and NTRANS are INTEGERs, and the other arguments are REALs. MASK5 is designed to be
called after MEM5 has converged, and each call is likely to be somewhat less expensive than an
iterate of MEM5. A hidden mask p must be set up in area 〈4〉: this will be overwritten by the
routine. Commonly, this will be a visible mask, transformed into the hidden area 〈4〉 by a call to
MTRICF. The multipliers w in area 〈23〉 must be preserved from MEM5, together with 〈3〉 for the
model (if DEF ≤ 0.0), 〈22〉 for the accuracies (if ACC ≤ 0.0 or METHOD(2) = 2), and the nonlinear
area 〈29〉 (if METHOD(3) = 2).

The arguments are interpreted as follows:

ST is the vector arithmetic workspace. REAL

AMEAN is ρ̂, the value of the required integral ĥTp. REAL

ERRLO is the numerical lower limit on δρ, the standard deviation of ρ. REAL
≥ 0.0

ERRHI is the numerical upper limit on δρ, the standard deviation of ρ. REAL
≥ 0.0

JSTAT is the return code of evaluation of δρ:

0 Standard deviation was estimated accurately

1 Standard deviation may not have been estimated accurately

INTEGER
≥ 0

NTRANS is the number of transforms (calls to ICF/OPUS or TRICF/TROPUS)
performed within the package since the last call to MEM5 with
MEMRUN = 1.

INTEGER
> 0

For some masks p, the estimation of δρ can be intrinsically very ill-conditioned, and prone
to serious rounding error. Thus the value of the return code JSTAT should be checked. If MASK5
returns with JSTAT = 1 and relaxing UTOL (by a call to MEMSET) does not solve the problem, the
only palliative may be full DOUBLE PRECISION operation (see ‘Arithmetic accuracy’ on page 88).

Chapter 11

Example of simple use

A self-documented “TOY” deconvolution simulation is supplied with copies of MemSys5. Schemati-
cally, it operates as follows, using the basic steps common to maximum entropy driving programs.

1. Call MEINIT to initialise the package.

2. Request user input (here METHOD, NRAND, AIM, RATE, UTOL and ICF width for flexible testing).

3. Initialise the storage area management. (“TOY” has 64-cell areas, broken into multiple blocks
for illustration.)

4. Call MEMTRQ to check that ICF/TRICF and OPUS/TROPUS are consistent (this step is optional).

5. Read the data into area 〈21〉 from the appropriate disc file, set up the default m (or m/(1−m)
for Fermi–Dirac entropy) in DEF or 〈3〉, and, for Gaussian likelihood, the accuracies [σ−1] in
ACC or 〈22〉. The data are from a simulation in which a 64-cell visible-space distribution
is convolved with a square point-spread function of width five cells. Three files of data are
provided: gauss.dat in which Gaussian noise with standard deviation 10 units is added to
produce the dataset shown in Figure 11.1 (for METHOD(2) = 1), poiss.dat in which Poisson
noise is added (for METHOD(2) = 2), and fermi.dat in which the data are scaled suitably for
Fermi–Dirac entropy (METHOD(1) = 3).

6. CALL MEMSET(METHOD,...) to set up the control variables for MEM5
MEMRUN=1 to make MEM5 start a new run
Repeat . . .
CALL MEM5(ST,MEMRUN,...) to update w and maybe find Pr(D | α) and G
MEMRUN=2 to make MEM5 continue the run

. . . until (ISTAT.EQ.0) repeat until MEM5 has converged

7. Interrogate and/or output the results.

8. Repeat . . .
CALL MOVIE5(..) to obtain a sample from Pr(f | D)

. . . until (finish) repeat for as many samples as desired

9. Repeat . . .
Set mask to define a linear feature of f
CALL MTRICF(..) to generate hidden-space mask
CALL MASK5(..) to estimate the feature, with error bar

. . . until (finish) repeat for as many features as desired

73

74 CHAPTER 11. EXAMPLE OF SIMPLE USE

20 40 60
Cell number

0

200

400

600

800

Intensity

Figure 11.1: Noisy blurred data (gauss.dat).

11.1. EXAMPLE OF CLASSIC MAXIMUM ENTROPY 75

11.1 Example of classic maximum entropy

For the MEM5 run to be discussed, the arguments of MEMSET were as follows:

METHOD(0) = 2 classic with automatic noise scaling
METHOD(1) = 1 standard entropy
METHOD(2) = 1 Gaussian likelihood
METHOD(3) = 1 linear response
AIM = 1.0 stop at Ω = 1.0
RATE = 1.0 dimensionless distance limit
UTOL = 0.01 dimensionless tolerance
NRAND = 1 number of random vectors

The MEM5 diagnostics, reported in UINFO calls with MLEVEL = 10, were as follows, ending with
statements of Good = G and Evidence = 10 log10(Pr(D | α)), and a numerical printout of the
central reconstruction f̂ .

Note: The exact values produced by TOY may differ between computers, though they should
always converge to similar results.

Fractional OPUS/TROPUS inconsistency = 1.6015E-08
Fractional OPUS/TROPUS inconsistency = 4.5856E-09
Fractional OPUS/TROPUS inconsistency = 1.0006E-08

Iteration 1
Entropy === 0.0000E+00 Test === 1.0000 Chisq === 6.4000E+01

Scale === 4.6527E+00
LogProb === -3.3657E+02 Code === 0 Good === 0.0000E+00
Omega === .213183 dist === .6809 Alpha === 3.7872E-01
Ntrans === 7 Code === 001010

Iteration 2
Entropy === -1.2811E+03 Test === .4970 Chisq === 1.3494E+01

Scale === 4.3833E+00
LogProb === -3.3540E+02 Code === 0 Good === 4.2742E+00
Omega === .084627 dist === .2615 Alpha === 2.2674E-01
Ntrans === 21 Code === 001011

Iteration 3
Entropy === -8.5499E+02 Test === .0106 Chisq === 2.7713E+01

Scale === 3.2688E+00
LogProb === -3.1733E+02 Code === 0 Good === 5.2385E+00
Omega === .144363 dist === .1967 Alpha === 1.2807E-01
Ntrans === 37 Code === 001011

Iteration 4
Entropy === -1.1799E+03 Test === .0021 Chisq === 2.4730E+01

Scale === 2.7741E+00
LogProb === -3.0820E+02 Code === 0 Good === 6.7738E+00
Omega === .172493 dist === .1697 Alpha === 7.7915E-02

76 CHAPTER 11. EXAMPLE OF SIMPLE USE

Ntrans === 54 Code === 001011

Iteration 5
Entropy === -1.4613E+03 Test === .0032 Chisq === 2.3842E+01

Scale === 2.3813E+00
LogProb === -2.9980E+02 Code === 0 Good === 8.0827E+00
Omega === .201272 dist === .1696 Alpha === 4.9607E-02
Ntrans === 75 Code === 001011

Iteration 6
Entropy === -1.7225E+03 Test === .0022 Chisq === 2.4083E+01

Scale === 2.0691E+00
LogProb === -2.9223E+02 Code === 0 Good === 9.2738E+00
Omega === .232325 dist === .1621 Alpha === 3.2603E-02
Ntrans === 99 Code === 001011

Iteration 7
Entropy === -1.9524E+03 Test === .0015 Chisq === 2.5585E+01

Scale === 1.8205E+00
LogProb === -2.8542E+02 Code === 0 Good === 1.0242E+01
Omega === .266607 dist === .1628 Alpha === 2.1939E-02
Ntrans === 125 Code === 001011

Iteration 8
Entropy === -2.1635E+03 Test === .0008 Chisq === 2.7936E+01

Scale === 1.6225E+00
LogProb === -2.7944E+02 Code === 0 Good === 1.1064E+01
Omega === .306788 dist === .1600 Alpha === 1.5025E-02
Ntrans === 154 Code === 001011

Iteration 9
Entropy === -2.3606E+03 Test === .0009 Chisq === 3.0943E+01

Scale === 1.4649E+00
LogProb === -2.7432E+02 Code === 0 Good === 1.1787E+01
Omega === .356566 dist === .1639 Alpha === 1.0433E-02
Ntrans === 188 Code === 001011

Iteration 10
Entropy === -2.5434E+03 Test === .0008 Chisq === 3.4437E+01

Scale === 1.3398E+00
LogProb === -2.7005E+02 Code === 0 Good === 1.2323E+01
Omega === .416849 dist === .1642 Alpha === 7.3241E-03
Ntrans === 225 Code === 001011

Iteration 11
Entropy === -2.7154E+03 Test === .0007 Chisq === 3.8179E+01

Scale === 1.2412E+00
LogProb === -2.6664E+02 Code === 0 Good === 1.2802E+01

11.1. EXAMPLE OF CLASSIC MAXIMUM ENTROPY 77

Omega === .495818 dist === .1637 Alpha === 5.1881E-03
Ntrans === 266 Code === 001011

Iteration 12
Entropy === -2.8785E+03 Test === .0006 Chisq === 4.1946E+01

Scale === 1.1638E+00
LogProb === -2.6402E+02 Code === 0 Good === 1.3176E+01
Omega === .597425 dist === .1598 Alpha === 3.7034E-03
Ntrans === 310 Code === 001011

Iteration 13
Entropy === -3.0312E+03 Test === .0006 Chisq === 4.5560E+01

Scale === 1.1034E+00
LogProb === -2.6212E+02 Code === 0 Good === 1.3505E+01
Omega === .732356 dist === .1532 Alpha === 2.6618E-03
Ntrans === 362 Code === 001010

Iteration 14
Entropy === -3.1699E+03 Test === .0005 Chisq === 4.8891E+01

Scale === 1.0568E+00
LogProb === -2.6091E+02 Code === 0 Good === 1.3754E+01
Omega === .910269 dist === .0662 Alpha === 2.2873E-03
Ntrans === 419 Code === 001010

Iteration 15
Entropy === -3.2234E+03 Test === .0000 Chisq === 5.0331E+01

Scale === 1.0386E+00
LogProb === -2.6027E+02 Code === 0 Good === 1.3749E+01
Omega === 1.005892 dist === .0056 Alpha === 2.2873E-03
Ntrans === 469 Code === 000000

Good = 13.7 = [13.7 , 13.8] +- 4.7
Evidence = -1130.4 = [-1130.4 , -1130.3] +- 34.2 decibels

3.1341E+01 1.0469E+01 1.4083E-02 3.4742E-03
2.1907E-02 4.8423E+00 1.0920E+01 7.4004E+00
1.5856E+00 3.1543E+00 5.4914E+00 2.6403E+00
1.3046E-01 3.3589E+00 7.0285E+00 4.4637E+00
1.8152E+00 5.2656E+00 7.1888E+00 3.0551E+00
1.2920E-03 1.3445E-07 2.7727E-05 1.2424E-01
5.8249E-01 8.4300E-01 4.4108E-01 6.2134E-02
5.7649E-03 4.2275E-06 1.3015E+01 2.0464E+02
4.1466E+02 2.7147E+02 5.2480E+01 4.2455E+00
3.7920E+00 8.7204E+00 2.8976E+01 5.6673E+01
4.3522E+01 1.0696E+01 1.3838E-02 1.1046E+01
2.7999E+01 2.3419E+01 1.3818E+01 5.4434E+01
8.8791E+01 4.3318E+01 1.8904E+00 7.3660E-01
6.9818E-01 2.9075E-01 6.1664E-01 7.2216E+00

78 CHAPTER 11. EXAMPLE OF SIMPLE USE

1.2752E+01 6.1454E+00 3.3634E-02 2.9892E-06
2.1309E-05 1.0211E-04 1.9958E-01 5.9834E-01

The first diagnostic is the consistency check, verifying that OPUS/ICF and TRICF/TROPUS are
apparently each other’s transpose to REAL precision accuracy. The check is done three times, not
only to use different seed vectors, but also to ensure that ICF, TRICF, OPUS and TROPUS are at least
reasonably non-destructive.

This simple deconvolution problem was solved to within the desired 1% fractional tolerance in
15 iterates and 469 transforms of OPUS/ICF or TRICF/TROPUS. The maximum entropy diagnostics,
flagged by their triple equals sign === , generally correspond to the appropriate MEM5 arguments,
apart from the following:

Code (single-digit) = code6

Code (six-digit) = code5 to code0 (reading from left to right)
LogProb = (PLOW + PHIGH)/2 = loge Pr(D | α)
Good = (GLOW + GHIGH)/2 = G
dist = RATE× |δr |/r0

The Entropy, zero on entry, falls away from this global maximum to a value of −3223. Alpha,
which as printed is the value of α on exit, used to calculate the new multipliers w , likewise falls
steadily to its final value of 0.0023. (There might have been an occasional pause in α flagged by
code3 = 0 in a problem of this difficulty, though this run happened to proceed continuously.) Test,
after the first couple of iterates, remains comfortably small throughout the run. Omega rises steadily
to 1.006 (tolerably close to 1). The return Codes in ISTAT give overall information on each iterate:

code6 = 0 records that G was always found to acceptable accuracy,
code5 = 0 records that the cloud mismatch H was always found to acceptable accuracy,
code4 = 0 records that TEST never exceeded 1.0,
code3 = 1 until the end records steady decrease in α,
code2 = 0 records that the distance limit was never invoked for α,
code1 = 1 until the end records the stopping condition OMEGA = 1.0 not being reached,
code0 = 1 until the end records the cloud overlap criterion not being met.

At the end of the run, Good and Evidence are reported. Their numerical lower and upper
limits are given in the form [13.7,13.8]. The width of this interval depends on the convergence
criterion for conjugate gradient iteration, which is controlled by UTOL. The random vector standard
deviation is also given, in the form +-4.7. This standard deviation may be decreased by increasing
NRAND. The Evidence is expressed in decibels (dB), so that 10 × −260.27/ loge 10 = −1130.4 dB.

Points to note are that LogProb does indeed rise to a maximum value at the end of the run, as
it should because the final value of α ought to be the most probable. With automatic noise scaling
in operation, χ2 on entry rescales to the number of data (here 64), and when the stopping criterion
is satisfied it measures the number of “bad” measurements (here 50). Conversely, the number of
“good” measurements rises from 0 to 14, verifying the prediction (page 31) that when the stopping
criterion is satisfied

χ2 +G = N.

The diagnostic Scale is the rescaling coefficient SCALE = c. The final value c = 1.0386 suggests
that the noise, which was initially assumed to have standard deviation 10.0, should more properly
be assigned a standard deviation of 10.386. As it happens, the noise was drawn from a distribution
with standard deviation 10.000. However, the prediction of 10.386 is unusually accurate for such a

11.1. EXAMPLE OF CLASSIC MAXIMUM ENTROPY 79

small-scale problem, because with only 50 “bad” measurements to define c, a proportional error of
order 50−1/2 ≈ 14% might be expected.

The reconstruction f̂ at the centre of the posterior cloud for the classic maximum entropy
analysis of the data shown in Figure 11.1 is shown in Figure 11.2, and the hidden-space distribution
ĥ from which it was derived is shown in Figure 11.3. The ICF was in this case a three-cell triangular
point-spread function (1/4, 1/2, 1/4), and comparison of Figures 11.2 and 11.3 shows that its effect is
to make f = C h a ‘smoother’ version of h , by introducing local correlations between the elements
of f .

Inspection of f̂ in Figure 11.2 shows a large signal around cell 33, some more structure around
cell 49, a certain amount of signal between these two positions, and not much outside. Comparing
this with the data in Figure 11.1, and noting that the noise standard deviation was 10 units, these
features of the reconstruction are entirely reasonable. Nonetheless, inspection of f̂ alone gives no
indication of the reliability of the structures seen. To gain an impression of which features are likely
to be ‘real’, we turn to the four uncorrelated MOVIE5 samples from the posterior cloud Pr(f | D),
shown in Figures 11.4 to 11.7. From these we see immediately that the major peak in cells 32
to 34 is present in similar form in all four samples, which suggests that it is probably reliable.
Indeed, the proportion of samples in which a feature appears is a direct estimate of the probability
of that feature being present. There is also a secondary peak around cells 48 to 50 which, while
slightly less clearly defined than the peak in cells 32 to 34, is also consistently present. There is
also some structure present in all four samples between these two peaks which varies from sample
to sample. Outside this region, there appears to be little consistent structure. All four MOVIE5
samples show some negative values. As explained on page 25, such values signal a local breakdown
of the Gaussian approximation, which we are presently unable to quantify.

80 CHAPTER 11. EXAMPLE OF SIMPLE USE

20 40 60
Cell number

0

200

400

600

800

Intensity

Figure 11.2: Classic maximum entropy reconstruction f̂ from the data of Figure 11.1.

20 40 60
Cell number

0

200

400

600

800

Intensity

Figure 11.3: Hidden-space distribution ĥ from which f̂ in Figure 11.2 was constructed.

11.1. EXAMPLE OF CLASSIC MAXIMUM ENTROPY 81

20 40 60
Cell number

0

200

400

600

800

Intensity

Figure 11.4: MOVIE5 sample from the posterior cloud in visible space.

20 40 60
Cell number

0

200

400

600

800

Intensity

Figure 11.5: MOVIE5 sample from the posterior cloud in visible space.

82 CHAPTER 11. EXAMPLE OF SIMPLE USE

20 40 60
Cell number

0

200

400

600

800

Intensity

Figure 11.6: MOVIE5 sample from the posterior cloud in visible space.

20 40 60
Cell number

0

200

400

600

800

Intensity

Figure 11.7: MOVIE5 sample from the posterior cloud in visible space.

11.1. EXAMPLE OF CLASSIC MAXIMUM ENTROPY 83

Finally, the use of MASK5 is illustrated to enable specific linear features of the reconstruction to
be quantified. Some results are given in Table 11.1.

Cells 32 to 34 contain the major peak, estimated as 891±37. A little more accuracy is obtained
by incorporating the nearest neighbours (956 ± 30). Although the central reconstruction shows
some structure to the left of this peak, the MOVIE5 samples indicate that it is not well-defined.
This is confirmed by MASK5, which demonstrates that it is scarcely significant (112± 53). Localised
structure to the left, as in cells 6 to 8, is even less significant (23 ± 26). Of course, this relatively
large quoted error does not imply that the total quantity in these first three cells might be negative:
it represents the curvature at the maximum of the probability cloud, and the cloud necessarily cuts
off at zero intensity.

The second peak, in cells 48 to 50, has much the same absolute error as the first (187 ± 35
alone, 202 ± 30 with neighbours), and again there is no significant evidence for structure beyond
it (29 ± 34). Between the two major peaks, there is evidence (219 ± 42) of some broad structure,
although the precise form varies from one sample to another. There might be a barely-significant
peak (62± 35) next to an insignificant valley (0± 1). Combining these two yields (62± 35), with
almost the same quoted error (actually fractionally smaller) as on the peak alone: estimates of
fluxes in different domains are correlated. All these estimates seem entirely reasonable in the light
of the data (Figure 11.1), and serve to confirm the initial visual assessment of the analysis gained
from f̂ and the MOVIE5 samples.

These examples of quantification are only a simple illustration of the use of MASK5. More
sophisticated masks can be constructed to estimate uncertainties in the position or width of specific
features. For features which cannot be expressed or approximated by simple masks, such as medians
or maxima, marginal posterior probability densities can be obtained using MOVIE5 to generate
samples for a Monte Carlo analysis. Of course, it will generally be quicker to use MASK5 to estimate
the uncertainty of any specified linear feature.

Table 11.1: Results of MASK5 quantification of features of f̂ in Figure 11.2.

Left cell Right cell Estimate Description

32 34 890.77± 37.46 First major peak
31 35 956.26± 30.44 First major peak neighbourhood
1 30 112.25± 53.37 Left of first major peak
6 8 23.16± 25.77 Localised structure

48 50 186.54± 34.50 Second major peak
47 51 202.25± 29.74 Second major peak neighbourhood
52 64 29.29± 33.80 Right of second major peak

36 46 219.10± 41.65 Broad structure
44 46 62.46± 34.72 Minor peak
43 43 0.01± 1.28 Minor valley
43 46 62.48± 34.69 Minor peak and valley

84 CHAPTER 11. EXAMPLE OF SIMPLE USE

11.2 Post script

The TOY simulation was actually produced from the distribution shown in Figure 11.8—but it might
not have been! When attempting to assess the performance of an algorithm by its recovery of a
simulation, beware the fixed-point theorem, which implies that under very weak conditions, any
reconstruction algorithm, no matter how bizarre, will work perfectly for something .

The MaxEnt quantified results are compared with the “truth” in Table 11.2. The MaxEnt error
bars are seen to be quite reasonable, with the exception of the penultimate value, 0.01± 1.28, for
which the “true” value was 20. This overly small quoted error, on a low value of f̂ , must reflect a
local failure of the Gaussian approximation to Pr(f).

20 40 60
Cell number

0

200

400

600

800

Intensity

Figure 11.8: The true simulation f for Figures 11.1, 11.2 and 11.3.

11.2. POST SCRIPT 85

Table 11.2: Comparison of estimated and true values for the simulation of Figure 11.2.

Left cell Right cell Estimate True simulation

32 34 890.77± 37.46 920
31 35 956.26± 30.44 940
1 30 112.25± 53.37 0
6 8 23.16± 25.77 0

48 50 186.54± 34.50 220
47 51 202.25± 29.74 240
52 64 29.29± 33.80 0

36 46 219.10± 41.65 220
44 46 62.46± 34.72 60
43 43 0.01± 1.28 20
43 46 62.48± 34.69 80

Chapter 12

Helpful hints

As with other sophisticated systems, a “folklore” of useful advice continues to build up around the
MemSys programs.

12.1 Multiple maxima of α

Perhaps most important is that the “best” (i.e., most probable) α may not be unique. As α
decreases along the maximum entropy trajectory, there may be more than one local maximum of
Pr(D | α), the natural logarithm of which is printed as the diagnostic LogProb. Subroutine MEM5
is designed to give a zero return code at the first such maximum to be encountered. Indeed, MEM5
will give a return code of zero right at the beginning if the initial default distribution m is already
sufficiently close to the data (Ω ≥ 1.0).

However, there may be a yet more probable value of α further down the trajectory. The only
way of finding out is to force MEM5 to iterate further down by imposing a suitably low temporary
target value AIM until LogProb starts to increase again (if it does). Then AIM can be reset to the
desired value (usually 1.0) and MEM5 should iterate towards the next local maximum.

12.2 Tolerance variable UTOL

It can be tempting to try to attain “more accuracy” by reducing the tolerance variable UTOL.
However, a value of, say, 0.01 ensures that when the stopping is satisfied the probability cloud
Pr(h | D) estimated by the program overlaps the “true” cloud to within a cross-entropy H of
less than 0.01. Actually, the overlap is likely to be considerably more accurate than this, because
each successive iterate of MEM5 attempts to reduce still further the difference between the estimated
and “true” clouds. Even in the worst case, an integral ρ = ĥTp inferred from the computed
cloud should be in error by only about (2H)1/2 ≈ 0.14 of its quoted standard deviation δρ. Any
greater precision than this merely involves refining the estimates to within a fraction of a standard
deviation. Indeed, making UTOL unduly small is actually harmful, because it imposes unnecessarily
tight requirements on the conjugate gradient algorithms within the package. These will require
more (expensive) transforms, possibly to the extent that the internal iteration limits are reached.
If that happens, one or more of the return codes code0, code1, code5, code6 will be non-zero, and
the user may be misled into thinking that the program has failed.

The exception to this, when “more accuracy” is truly needed, is when values of Evidence for
different variable settings are being used as Pr(D | variable) in order to infer the most probable
value of the variable in question. Here, one requires Evidence to be a smooth function of the

87

88 CHAPTER 12. HELPFUL HINTS

variable, in order to locate the maximum. Even here, though, the efficient way of proceeding is to
start off with NRAND = 1 and UTOL reasonably large (perhaps even up to the allowed limit of 1.0),
and then do a few more iterations at the end with a smaller value of UTOL, and perhaps a larger
NRAND, until the value of Evidence settles down.

12.3 Internal iteration limits

Unusually difficult problems may hit internal iteration limits even when UTOL is relatively large. If
this problem persists and causes difficulty, the PARAMETER LMAX in the MemSys INCLUDE file may be
increased from its installation value (usually 30). This is not generally recommended because of
the extra expense which may be incurred, and because accumulated rounding errors may detract
from the potential extra accuracy.

12.4 Arithmetic accuracy

The accuracy of all calculations within MemSys5 is commensurate with the arithmetic precision
of the transform operations, so that ordinary REAL precision is adequate to deal with almost all
practical data. In exceptional cases, with data of extreme accuracy, it may be necessary to go to
double precision. This is effected by editing “ REAL ” to “ DOUBLE PRECISION ” throughout all
the source code, including transforms and the INCLUDE file, with explicit spaces so that the variable
name NREALS is preserved. A particularly strict compiler might also require floating-point formats
to change from “E” to “D”. Such formats are to be found in “WRITE (INFO,’(. . . E . . .)’) . . . ”
statements. At the same time, the PARAMETER LMAX in the MemSys INCLUDE file should be increased,
say to 50.

12.5 Combination of transforms

Within the MemSys5 package, the application of C to a vector by ICF is almost always followed
immediately by an application by OPUS of R to the result, and no use is made of the intermediate
visible-space vector. The only exceptions to this are in the construction of f̂ from ĥ at the end of
each MEM5 iterate and the construction of the visible sample from v = ĥ + ∆h at the end of each
MOVIE5 call. Similarly, the application of RT to a vector is always followed immediately by the
application of C T to the result, and the intermediate vector is not used.

In some cases, it may be computationally cheaper to apply the combined R C transform in one
operation than to apply the individual C and R transforms separately. Similarly for the transpose
operation, it may be cheaper to apply C TRT than to apply RT and C T separately. If this is so,
the user should supply the combined forward operator R C as either ICF or OPUS, and an identity
operator as the other. Likewise, the combined transpose operator C TRT should be supplied as
either TRICF or TROPUS, and an identity operator as the other. It may be convenient to overlay
areas 〈2〉 and 〈11〉 (if OPUS applies R C) or areas 〈11〉 and 〈25〉 (if ICF applies R C) so that no
actual operation is required to apply the identity.

If the transforms are combined in this way, however, then the vectors supplied in area 〈11〉
on return from MEM5 and MOVIE5 will not be the correct visible-space quantities, and the recov-
ery of the correct visible-space quantities from the hidden-space distributions becomes the user’s
responsibility.

Bibliography

[1] M. K. Charter. Drug absorption in man, and its measurement by MaxEnt. In Paul F. Fougère,
editor, Maximum Entropy and Bayesian Methods, Dartmouth College 1989, pages 325–339,
Dordrecht, 1990. Kluwer. ISBN 0–7923–0928–6.

[2] M. K. Charter. Quantifying drug absorption. In Grandy and Schick [4], pages 245–252. ISBN
0–7923–1140–X.

[3] R. T. Cox. Probability, frequency and reasonable expectation. Am. J. Physics, 14(1):1–13,
1946.

[4] W. T. Grandy, Jr. and L. H. Schick, editors. Maximum Entropy and Bayesian Methods,
Laramie, Wyoming, 1990, Dordrecht, 1991. Kluwer. ISBN 0–7923–1140–X.

[5] S. F. Gull. Developments in maximum entropy data analysis. In Skilling [15], pages 53–71.
ISBN 0–7923–0224–9.

[6] S. F. Gull and G. J. Daniell. Image reconstruction from incomplete and noisy data. Nature,
272:686–690, April 1978.

[7] S. F. Gull and J. Skilling. The maximum entropy method. In J. A. Roberts, editor, Indirect
Imaging. Cambridge Univ. Press, 1984.

[8] S. F. Gull and J. Skilling. Maximum entropy method in image processing. IEE Proc.,
131(F):646–659, 1984.

[9] E. T. Jaynes. Where do we stand on maximum entropy? In R. D. Rosenkrantz, editor, E.T.
Jaynes: Papers on Probability, Statistics and Statistical Physics, chapter 10, pages 210–314.
D. Reidel, Dordrecht, 1983. Originally published in 1978 in the Proceedings of a Symposium
on ‘The Maximum-Entropy Formalism’ held at M.I.T. in May 1978.

[10] H. Jeffreys. Theory of Probability. Oxford Univ. Press, Oxford, third edition, 1985. ISBN
0–19–853–193–1.

[11] R. D. Levine. Geometry in classical statistical thermodynamics. J. Chem. Phys., 84:910–916,
1986.

[12] C. C. Rodŕıguez. The metrics induced by the Kullback number. In Skilling [15], pages 415–422.
ISBN 0–7923–0224–9.

[13] J. E. Shore and R. W. Johnson. Axiomatic derivation of the principle of maximum entropy and
the principle of minimum cross-entropy. IEEE Trans. Info. Theory, IT–26(1):26–37, January
1980.

89

90 BIBLIOGRAPHY

[14] J. Skilling. Classic maximum entropy. In Maximum Entropy and Bayesian Methods, Cambridge
1988 [15], pages 45–52. ISBN 0–7923–0224–9.

[15] J. Skilling, editor. Maximum Entropy and Bayesian Methods, Cambridge 1988, Dordrecht,
1989. Kluwer. ISBN 0–7923–0224–9.

[16] J. Skilling. On parameter estimation and quantified MaxEnt. In Grandy and Schick [4], pages
267–273. ISBN 0–7923–1140–X.

[17] J. Skilling and S. F. Gull. Bayesian maximum entropy. In A. Possolo, editor, Proc. AMS–IMS–
SIAM Conference on Spatial Statistics and Imaging, Bowdoin College, Maine, 1988, 1989.

[18] J. Skilling, D. R. T. Robinson, and S. F. Gull. Probabilistic displays. In Grandy and Schick
[4], pages 365–368. ISBN 0–7923–1140–X.

[19] Y. Tikochinsky, N. Z. Tishby, and R. D. Levine. Consistent inference of probabilities for
reproducible experiments. Phys. Rev. Lett., 52:1357–1360, 1984.

Appendix A

User-supplied routines

The following subroutines which are called by the MemSys5 package must be supplied by the user.
Examples of them are provided in the TOY demonstration program.

UINFO Handle diagnostic messages from the package. See page 59.

USAVE Preserve arrays of INTEGERs and REALs containing the package’s internal variables. See
page 61.

UREST Retrieve the arrays of INTEGERs and REALs preserved by USAVE. See page 61.

UFETCH Read a block of an area from a direct-access disc file. See page 52.

USTORE Write a block of an area to a direct-access disc file. See page 52.

ICF Transform from hidden space to visible space, giving correlations in visible-space distribution.
See page 57.

TRICF Transform from visible to hidden space, applying transpose of ICF transform. See page 57.

OPUS Transform from visible space to data space, giving differential response. See page 55.

TROPUS Transform from data space to visible space, applying transpose of OPUS transform. See
page 55.

UMEMX Calculate nonlinearity in differential response (called only if METHOD(3) = 1). See page 56.

91

Appendix B

Historic maximum entropy

It has been shown in part I of this manual that the maximum entropy analysis implemented in the
MemSys5 package follows inevitably from the basic laws of probability theory as applied to positive
additive distributions, and the whole process should be considered as an application of Bayesian
inference. Nonetheless, maximum entropy can be used as an ad hoc regularisation technique, in
which the experimental data are forced into a definitive “testable” form which rejects outright all
but a “feasible” set of h . The Principle of Maximum Entropy is then applied directly by selecting
that surviving feasible h which has greatest entropy S.

The misfit between the observed data D and the predicted data F (h) may be quantified in the
usual way with a χ2 statistic:

χ2(h) = (D − F (h))T [σ−2] (D − F (h)).

On average, χ2 might be expected to take a value not much greater than its formal expectation
over possible data, namely

χ2(h) ≤ N,

which corresponds to the data being, on average, one standard deviation away from the recon-
struction. This “discrepancy principle” can be used as a testable constraint to define the feasible
distributions h .

In the event that h is positive and additive, entropic arguments apply, and the “best” feasible
h can be found by

“maximising S(h) over the constraint χ2(h) = N ”.

This is illustrated in Figure B.1. The “historic” maximum entropy reconstruction is that distribu-
tion h = (4.36, 3.00) which occurs where the trajectory cuts into the shaded region χ2(h) ≤ N .

We call the “χ2 = N” technique “historic maximum entropy” after its use by Frieden (1972),
Gull and Daniell (1978), Gull and Skilling (1984b) and others. Although such reconstructions h
are often much clearer and more informative than those obtained with cruder techniques, historic
maximum entropy is not Bayesian, and hence imperfect. The constraint χ2(h) = N is only an
approximation to the true likelihood Pr(D | h), no single selected h can fully represent the posterior
probability Pr(h | D) which theory demands, and it is difficult to define the number N of fully
independent data in a suitably invariant manner. A further difficulty arises with Poisson data,
for which the formal expectation over possible data of the log(likelihood) analogue of χ2 is not
constant, but varies with the PAD h .

Finally, it is well known that the discrepancy principle gives systematically underfitting recon-
structions. The reason is that the χ2 statistic between D and F (h) will indeed average to N if h is

93

94 APPENDIX B. HISTORIC MAXIMUM ENTROPY

the “truth”. The truth, however, is unattainable, and the computed h will necessarily be biassed
towards the data, so that the misfit is reduced. Accordingly, “χ2 = N” is too pessimistic. The
classic Bayesian analysis confirms this and quantifies the expected misfit in terms of good and bad
degrees of freedom.

Nevertheless, for reasons of compatibility, historic maximum entropy is retained within MemSys5
as the “METHOD(0) = 4” option.

0 m1 h1 −→
0

m2

h
2
−→

Figure B.1: Historic maximum entropy.

Appendix C

Reserved names

The MemSys5 package contains the following globally-visible symbols:

MADD MASK5 MCHECK MCLEAR
MDIV MDOT MECOPY MEFLAG
MEINFO MEINIT MEM5 MEMCGD
MEMCGH MEMCHI MEMCOM MEMDET
MEMDOT MEMENT MEMGET MEMICF
MEMLA MEMLA0 MEMLAR MEMLAW
MEMLB MEMOP MEMPOI MEMSET
MEMSMA MEMSMD MEMTR MEMTRQ
MENT1 MENT2 MENT3 MENT4
MENT51 MENT52 MEPRB0 MEPROB
MEPROJ MEREST MESAVE MESCAL
MESMUL MESURE MESWAP METEST
MEVMUL MEVRND MEXP MEZERO
MFETCH MFILL MLOG MMEMX
MMOV MMUL MOVIE5 MRAND
MRECIP MSADD MSIGN MSMUL
MSMULA MSQRT MSUB MSUM
MSWAP MTRICF MWHILE

and from the library of storage-handling and vector routines:

VADD VDIV VDOT VEXP
VFETCH VFILL VLOG VMEMX
VMOV VMUL VPOINT VRAND
VRAND0 VRAND1 VRAND2 VRANDC
VRECIP VSADD VSIGN VSMUL
VSMULA VSQRT VSTACK VSTORE
VSUB VSUM VSWAP

These reserved names should be not used for other subroutines, functions, or COMMON blocks.

95

Appendix D

Changes from MemSys2 to MemSys3

Apart from the obvious improvements in quantification and algorithmic power, the principal changes
from the earlier MemSys2 maximum entropy program are:-

(a) Incorporation of positive/negative distributions.

(b) Incorporation of Poisson statistics.

(c) Withdrawal of the Kramers–von Mises “exact-error-fitting” option as inconsistent with correct
theory.

(d) Withdrawal of support for sequential-access disc files (because of the difficulty of updating in
place).

(e) Withdrawal of user-defined weights in the individual cells, which are unnecessary, given that
hj is defined as the quantity in cell j.

(f) Accuracies defined as 1/σ, not 2/σ2

(g) Altered format of common block MECOMP and addition of a control block MECOML.

(h) All variables within MemSys3 are explicitly typed, and the common blocks specified in the
“INCLUDE” files must adhere to this convention.

(i) Storage limits, such as in MECOMS, can be declared as PARAMETERs, so that potential array
bound violations can be checked at runtime.

(j) Only the lowest, vector library, routines need be aware of the physical storage locations,
because all pointers are passed explicitly as integers: this aids portability.

97

Appendix E

Changes from MemSys3 to MemSys5

The principal changes from the earlier MemSys3 package are further algorithmic power, and:–

(a) Generation of random samples from the posterior probability density Pr(h | D).

(b) Estimates of the numerical uncertainties in G and log Pr(D) are provided.

(c) Different usage of the scalars DEF and ACC for setting ‘flat’ defaults and constant accuracies.

(d) Output scalars such as ALPHA and SCALE no longer need to be preserved by the user between
calls to the package.

(e) Intrinsic correlation functions (ICFs) are supported explicitly.

(f) Fermi–Dirac and quadratic entropy have been added to the existing standard and posi-
tive/negative options.

(g) The vector arithmetic workspace ST is supplied as an argument to the major subroutines of
the package, and also to the user-supplied transform routines.

(h) Revised storage management, so that the externally-visible COMMON blocks have been with-
drawn.

(i) A separate subroutine is used to set the MemSys5 control variables METHOD, AIM, RATE, etc.

(j) All diagnostic output is directed through calls to a user-supplied diagnostic handler, so that
LEVEL and IOUT are no longer required inside the package.

(k) A ‘save/restore’ facility has been added, to save the internal state of the package in external
storage (perhaps on disc), whence it can later be restored to regenerate the internal state
exactly.

(l) The area-copying routines MEMJ and MEMK have been withdrawn, and replaced with a single
routine MECOPY.

(m) The user-supplied subroutine MEMEX for specifying nonlinear response has been re-named
UMEMX.

(n) The compiled object size is smaller.

99

Index

α, see regularisation constant
β distance limit, 27, 28, 35, 38, 69
χ2, 16, 30, 65, 68, 78, 93–94

ACC argument
of MEMGET, 66
of MEMSET, 46, 61, 65, 66, 67, 73, 99

accuracies, 46, 61, 66, 67, 70, 71, 73, 97
addressing, 49

disc, 51–52, 60, 61
memory, 45, 50–52, 60, 61

advanced maximum entropy, 25
AIM argument

of MEMGET, 66
of MEMSET, 62, 65, 66, 68, 73, 87, 99

algorithm assessment, 84
algorithmic performance, 84, 97, 99
ALPHA argument, 66–69, 99
AMEAN argument, 71
areas, 43, 45–47, 50–52, 66–71
arguments

of ICF, 57
of MASK5, 71
of MEM5, 66–69
of MOVIE5, 69–71
of MEMGET, 66
of MEMSET, 65–66
of OPUS, 55
of TRICF, 57
of TROPUS, 55
of UMEMX, 56

array bounds, 97
assignment of density, 13–15
automatic noise scaling, 30–31, 35, 62, 65, 75,

78

bad measurements, 28, 31, 68, 78, 94
Bayes’ theorem, 12, 30
Bayesian calculus, 11
Bayesian formulation, 17, 93

buffers, 51, 52, 53, 63

C language, 7
central reconstruction, 26, 31, 38, 43, 75, 83
CHISQ argument, 60, 66, 67, 68, 69
classic maximum entropy, 17–24, 27, 30, 35,

36, 39, 62, 65, 66, 68, 69
example, 75–83

cloud, 17, 19–25, 27–28, 30, 31, 36, 38, 39, 43,
66, 67, 69, 70, 78, 79, 81–83, 87

compatibility, 55, 94
conditional probability, 12, 17, 19, 25, 30
conjugate gradient, 36–37, 66, 70, 78, 87
consistent coding, 44, 60, 73, 78
constraint on

∑
h, 34, 65

continuum limit, 14, 24, 26, 29
control, 43
convolution, 73
cross-entropy, 27, 87

data, 7, 11–14, 16–27, 30–31, 36, 38, 43–45,
55, 63, 66, 73, 74, 78, 79, 83, 87, 88,
93

data space, 30, 43, 45, 47, 49, 55
algorithm, 38–39

deconvolution, 7, 73, 78
DEF argument

of MEMGET, 66
of MEMSET, 46, 61, 65, 66, 67, 73, 99

default model, 14, 19, 25, 46, 47, 66, 73, 87,
99

degeneracy, 15
determinant of matrix, 36–38
diagnostics, 49, 59–60, 63, 67, 69, 75–79, 87,

99
direct-access disc file, 51
distance limit, 27, 62, 66, 75, 78
distribution, 13–15, 25

default, 87
Fermi–Dirac, 34

101

102 INDEX

hidden-space, see hidden space, distribu-
tion

visible-space, see visible space, distribu-
tion

distributions, 7
DOUBLE PRECISION, 62, 71, 88

eigenvalues, 18
entropic prior, 13–15, 17, 29
entropy, 14, 17, 19, 28, 33, 35, 38, 65, 67, 78

Fermi–Dirac, see Fermi–Dirac entropy
positive/negative, see positive/negative en-

tropy
quadratic, see quadratic entropy
standard, 65

ERR argument, 60
ERRHI argument, 71
ERRLO argument, 71
error messages, 61–63
evidence, 13, 18, 19, 30, 38, 43, 62, 66, 75, 78,

87
exact-error-fitting, 97
external storage, 45, 47, 50, 52, 61, 63

fatal error, 61
feasible distribution, 93
Fermi–Dirac entropy, 34, 65, 73, 99
fixed-point theorem, 84
flowchart, 59, 60
Fortran 77, 7, 43, 65, 67, 69, 71

Gaussian approximation, 17–18, 20, 25, 79, 84
Gaussian distribution, 25
Gaussian errors, 12, 15–17, 19, 27, 43, 62, 65,

66, 73, 75
GDEV argument, 66, 67, 68, 69
GHIGH argument, 66, 67, 68, 69
GLOW argument, 66, 67, 68, 69, 78
good measurements, 19, 28, 31, 38, 43, 68, 69,

78, 94

hardware, 49, 51, 53
hidden space, 29, 38, 43, 45, 47, 49, 63, 70,

71, 73
algorithm, 35–36, 38
distribution, 16, 19, 43, 45, 57, 69, 79, 80,

88
hints, 87–88
historic maximum entropy, 35, 65, 66, 93–94

I/O, see input/output
ICF, see intrinsic correlation function
ICF subroutine, 57, 60, 63, 73, 78, 88, 91

number of calls, see NTRANS argument
image, 13, 29
inference, 7, 11–13, 93

about noise level, 30–31
about the reconstruction, 19, 24–26
routine MASK5, 71

initialisation
MEM5 run, 43, 61, 67
random generator, see random generator,

initialisation
storage area management, 73
system, see system initialisation

input/output, 50–52, 59
intrinsic correlation function, 29, 33, 57, 63,

73, 79, 99
ISEED argument

of MEMGET, 66
of MEMSET, 65, 66
of MEMTRQ, 60

ISTAT argument, 66, 67, 69, 73, 78
iterative algorithm, 26–29

in data space, see data space, algorithm
in hidden space, see hidden space, algo-

rithm

joint probability, 12, 17
JSTAT argument, 71

kangaroos, 14, 29
Kramers–von Mises, 97
KSTAT argument, 70

L, 16, 17
L, 17–20, 26, 28, 30, 35, 38, 68
Lagrange multiplier, 38, 43, 46, 69, 71, 78
least squares, 34
LEVEL argument, 99
likelihood, 12, 13, 93

Gaussian, see Gaussian errors
Poisson, see Poisson statistics

local maximum, 19, 87
logical proposition, 11

macroscopic data, 24
mask, 25, 43, 46, 71, 73, 83

INDEX 103

MASK5 subroutine, 43, 44, 46, 61, 71, 73, 83,
95

maximum entropy, 7, 14, 25, 29, 33, 34, 38
classic, see classic maximum entropy
cloud, 20–24
historic, see historic maximum entropy
principle, see principle of maximum en-

tropy
program, 55, 73
trajectory, 19, 26, 30, 43, 87

MECOML common block, 97
MECOMP common block, 97
MECOMS common block, 97
MECOPY subroutine, 59, 63, 95, 99
MEINIT subroutine, 44, 47, 62, 73, 95
MEM5 subroutine, 43, 44, 46, 60–62, 65–69, 71,

73, 75–83, 87, 88, 95
MEMEX subroutine, 99
MEMGET subroutine, 66
MEMICF subroutine, 63, 95
MEMJ subroutine, 99
MEMK subroutine, 99
MEMRUN argument, 61, 67, 69, 71, 73
MEMSET subroutine, 65–66, 71
MemSys2, 97
MemSys3, 97–99
MemSys5, 7, 26, 43, 45, 49, 52, 53, 57, 59, 61–

63, 73, 88, 93–95
MEMTRQ subroutine, 44, 60, 73, 95
MEREST subroutine, 61, 95
MESAVE subroutine, 61, 95
MESWAP subroutine, 63, 95
METHOD argument

of MEMGET, 66
of MEMSET, 54, 61, 62, 65, 66–69, 73, 75,

94, 99
metric tensor, 15
microscopic structure, 24
MLEVEL argument, 59, 75
mock data, 25, 29, 93
model, 25, 30, 33, 34, 70, 71
monkeys, 15
Monte Carlo, 38, 83
movie, 26, 43
MOVIE5 subroutine, 43, 44, 46, 61, 69–71, 73,

79–83, 88, 95
MTRICF subroutine, 63, 71, 73, 95
multiplier, see Lagrange multiplier

NCORR argument, 69, 70
noise, 12, 15, 25, 27, 28, 30–31, 35, 65, 78, 79

Gaussian, 43, 73
Poisson, 73
scaling, 68

nonlinear
functional, 26, 43
response, 29, 46, 54, 56, 61, 62, 66, 67, 70,

71
normal statistics, see Gaussian errors
NRAND argument

of MEMGET, 66
of MEMSET, 62, 65, 66, 73, 75, 78, 88

NTRANS argument
MASK5, 71
MEM5, 66, 67, 69
MOVIE5, 69, 71

OMEGA argument, 66, 67, 68, 69, 78
OPUS subroutine, 55–57, 60, 73, 78, 88, 91

number of calls, see NTRANS argument
overall probability, see evidence
overlap of clouds, 28, 66, 78, 87
overlay of areas, 47, 53, 55, 88

PAD, see positive additive distribution
PDEV argument, 66, 67, 68, 69
PHIGH argument, 66, 67, 68, 69, 78
PLOW argument, 66, 67, 68, 69, 78
pointers, 50, 97
Poisson errors, 12, 43, 61, 62, 65, 67, 93, 97
positive additive distribution, 13–15, 25, 93
positive/negative distribution, 33, 97
positive/negative entropy, 65
posterior inference, 13
posterior probability, 17, 20, 24–26, 28, 31, 36,

39, 43, 70, 79, 83, 93, 99
power spectrum, 13, 29
predicted data, see mock data
principle of maximum entropy, 14, 93
prior probability, 13–15

for α, 18
for unknown variables, 30

probability calculus, 11–12
proportional error, 24, 29

in c, 79
proposition, see logical proposition

quadratic entropy, 65, 99

104 INDEX

random fluctuations, 27
random generator, 53, 60

initialisation, 53, 65, 66
random vector, 28, 37, 38, 62, 66, 69, 70, 75

standard deviation, 68, 78
RATE argument

of MEMGET, 66
of MEMSET, 62, 65, 66, 73, 75, 99

REAL precision, 43, 78, 88
regularisation constant, 15, 18–19, 30, 43, 68
reserved names, 95
Residuals, 46
response function, 25, 29, 30, 54, 55, 62, 66,

75
nonlinear, see nonlinear response

restore, see save/restore utility
return code, 67, 69–71, 78, 87

ISTAT, see ISTAT argument
JSTAT, see JSTAT argument
KSTAT, see KSTAT argument

rounding error, 53, 60, 71, 88

S, 14, 17, 33, 34
S, 17–20, 26, 30, 35, 38, 93
S argument, 60, 66, 67, 67, 69
save/restore utility, 61
SCALE argument, 66, 67, 68, 69, 78, 99
scientific data analysis, 11, 12
sequential-access disc files, 97
single precision, see REAL precision
spatial invariance, 14
special case, 11, 14, 15, 25, 30
ST

argument
of ICF, 57
of MASK5, 71
of MECOPY, 63
of MEM5, 67
of MEMICF, 63
of MEMTRQ, 60
of MESWAP, 63
of MOVIE5, 69, 70
of MTRICF, 63
of OPUS, 55
of TRICF, 57
of TROPUS, 55
of UFETCH, 52
of USTORE, 52

of VFETCH, 50
of VSTORE, 50

vector arithmetic workspace, 45, 47, 50–
53, 55, 63, 99

stopping criterion, 19, 28, 31, 35, 36, 39, 43,
61, 62, 65, 66, 68, 78, 87

stopping value, 19, 26, 27, 43
storage requirement, 47
subspace, 36, 38
system initialisation, 44, 47, 73

termination criterion, 27, 28
TEST argument, 60, 66, 67, 68, 69, 78
testable information, 14, 93
TOL variable, 62
tolerance

arithmetic, 62
user-supplied, 37, 62, 66, 69, 75, 87

TOY program, 7, 73, 75–84
trace of matrix, 37, 38
trajectory, see maximum entropy, trajectory
transform

area, 47, 49, 63, 88
routines
ICF, see ICF subroutine
OPUS, see OPUS subroutine
TRICF, see TRICF subroutine
TROPUS, see TROPUS subroutine

transforms, 36, 46, 47, 53–56, 60, 61, 67, 71,
78, 87–88, 99

consistency of, see consistent coding
number of, see NTRANS argument

TRICF subroutine, 57, 60, 73, 78, 88, 91
number of calls, see NTRANS argument

TROPUS subroutine, 55–57, 60, 73, 78, 88, 91
number of calls, see NTRANS argument

trust region, 27, 66

UFETCH subroutine, 52, 91
UINFO subroutine, 59–60, 75, 91
UMEMX subroutine, 54, 56, 66, 91, 99
uniqueness, 19

lack of, 19, 87
UREST subroutine, 61, 91
USAVE subroutine, 61, 91
USTORE subroutine, 52, 91
UTOL argument

of MEMGET, 66

INDEX 105

of MEMSET, 62, 65, 66, 69, 71, 73, 75, 78,
87, 88

vector arithmetic, 49
library, 49, 53–54
workspace, see ST, vector arithmetic work-

space
vector coding, 36–38
vector space, 25, 29, 49

data, see data space
hidden, see hidden space
visible, see visible space

VFETCH subroutine, 45, 50–52, 63, 95
visible space, 29, 45, 47, 49, 55, 57, 63, 70, 71,

88
distribution, 29, 33, 43, 45, 55, 69

/VPOINT/ COMMON block, 50–52, 56, 61, 95
VRAND subroutine, 53, 95
VSTORE subroutine, 45, 50–52, 63, 95

weights, 97

zero error, 25

What do you think?

We would like your comments on the MemSys5 package, the TOY demonstration program and the
Manual. Criticism is welcome, and constructive criticism with suggestions for improvements even
more so. The following questions are a guide only, so please comment on other aspects if you wish.

The MemSys5 package

1. How easy do you think the package is to use? .

2. What features make it easy to use? .

. .

3. What features make it difficult to use? .

. .

How do you think these could be improved? .

. .

4. What other facilities would you like to see in the package? .

. .

5. Do you write your own transform routines (ICF, TRICF, OPUS, TROPUS)?

If so, do you find this easy? .

If not, what do you find difficult? .

. .

The TOY demonstration program

1. If you ran the demonstration program, how helpful was it in illustrating how to use MemSys5?

. .

2. What was particularly helpful about it? .

. .

107

3. What was particularly unhelpful about it? .

. .

How do you think this could be improved? .

. .

4. What parts (if any) of the demonstration program would you like to see removed, and why?

. .

5. What other features (if any) of MemSys5 would you like to see illustrated in the demonstration

program? .

. .

The MemSys5 Users’ manual

1. How helpful do you find this manual? .

. .

2. Which parts do you find most helpful, and why? .

. .

3. Which parts do you find least helpful, and why? .

. .

4. How could they be improved? .

. .

5. How do you find the mathematical content of the manual? .

. .

6. What other things (if any) would you like to see included in the manual?

. .

Please return your comments to Maximum Entropy Data Consultants Ltd.,

South Hill, 42 Southgate Street, Bury St. Edmunds, Suffolk IP33 2AZ, United Kingdom.

