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1 Transcriptional control of the Mesenchymal lineages

The Runt domain family member RUNX2 (alternatively known as CBFA1 or OSF2 ) is a well known transcrip-

tional activator of osteogenesis [1, 2]. For example, Karsenty and co-workers established that RUNX2 binds to

the promoter region of multiple osteoblast-specific genes (including osteocalcin, collagen I, bone sialoprotein, and

osteopontin), and is a key regulator of osteoblast differentiation in vivo [3]. In particular, they showed that RUNX2

controls expression of osteocalcin, the only known gene to be expressed in osteoblasts and no other matrix producing

cells. Analogously, the transcription factor SOX9 has been identified as essential for cartilage formation. Bi and

co-workers showed that SOX9 binds to the promoter region of both collagen 2a1 and collagen 11a2 genes [4], both

of which are essential for healthy cartilage formation. Similarly the transcription factor PPAR-γ is essential for

adipogenesis [5, 6] binding to, for example, the adipocyte specific AP2 enhancer [7]. Furthermore, PPAR-γ is a

potent activator of adipogenesis in nonadipogenic cells. For example, Tontonoz and co-workers demonstrated that

retroviral transfection with the PPAR-γ gene induces adipogenesis in cultured fibroblasts [6].

Since all three of these master genes are expressed in early mesenchymal progenitors (murine fetal derived mes-

enchymal stem cells coexpress RUNX2 and PPAR-γ [8] but do not express downstream lineage specific markers

such as osteocalcin and AP2 ; while RUNX2 and SOX9 are expressed in early osteochondral progenitors [9]) these

results suggest that interactions between the RUNX2/SOX9/PPAR-γ transcriptional trio determine dynamic cell

fate decisions in these mesenchymal lineages.

In fact, these three transcription factors are known to interact with each other either directly or via downstream

proteins. For example, recent results have shown that BMP2 upregulates expression of RUNX2 while simultaneously

downregulating transcription of PPAR-γ through activation of the intermediary transcription factor TAZ [10, 11].

Additionally, it has also been suggested that RUNX2 expression may also increase sensitivity to exogenous BMP2,

for example via regulation of BMP receptors or SMAD signaling [12], thus introducing an indirect autoactivating

feed-forward loop in RUNX2 expression. Conversely, PPAR-γ while a potent activator of adipogenesis also strongly

inhibits osteogenesis [13, 14] by both direct suppression of RUNX2 expression and altering the potential of RUNX2

to activate downstream osteogenic products [15, 16]. On the other hand PPAR-γ and the CCAAT/enhancer binding

protein C/EBP -α positively regulate each others expression [17]. Thus PPAR-γ, like RUNX2, also indirectly

positively regulates its own production.

Eames and co-workers showed that during skeletal development in chick embryos synergistic patterns of co-

expression of both SOX9 and RUNX2 determine osteo-chondral cell fates [18]. In particular, they provide direct

evidence that overexpression of SOX9 can directly inhibit expression of RUNX2 during skeletogenesis. Alternatively

osterix, a transcriptional regulator of osteogenesis downstream of RUNX2 [19], has been suggested as a negative

regulator of SOX9 expression [20]. Furthermore, Interleukin-6 has been shown to down-regulate SOX9 expression
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through the STAT1/3 pathway in bovine articular chondrocytes [21], while PPAR-γ has been shown to upregulate

STAT1 in NIH3T3 transfected fibroblasts [22]: introducing a repression of SOX9 expression by PPAR-γ through

STAT1.

The TGF-β signaling pathway is central to control of chondrogenesis and adipogenesis via SOX9 and PPAR-γ.

For example, TGF-β stimulates chondrogenesis through SMAD3 upregulation of SOX9 [23] while simultaneously

inhibiting adipogenesis by repressing C/EBP transactivation function also via SMAD3 [24]. However full details

of how SOX9 and PPAR-γ expression are balanced during chondrogenesis and adipogenesis are currently lacking.

Therefore, in order to complete the network we reasoned that SOX9 increases sensitivity to TGF-β signaling, thus

introducing autoactivation of SOX9 via TGF-β and SMAD3 and cross-repression of PPAR-γ by SOX9 via TGF-β,

SMAD3 and C/EBP.

Taken together these interactions form the regulatory network given in Fig. 1 of the main text. This network may

be coarse-grained by observing that each master-gene either directly or indirectly autoactivates its own expression,

while cross-repressing those of the other two. We note here that since positive feedback loops can be destabilizing,

it is likely that alternative negative feedback mechanisms are also present to balance the autoactivation loops. So,

for example, both in mice and rats RUNX2 directly down-regulates its own promoter activity [25] indicating that

there is a competition between auto-upregulation (via BMP2 and TAZ ) and direct auto-downregulation of RUNX2.

We anticipate that analogous negative feedback controls are present during chondrogenesis and adipogenesis and

act to stabilize SOX9 and PPAR-γ expression (for more details see model derivation below).

2 Derivation of Model Equations

Here we derive the computational model based upon the integrated transcriptional logic given in Fig. 2 in the main

text. The core of our model is derived from the following stoichiometric equations which describe transcription

factor binding to gene promoters:

P1 + P2

kC1

 C1

P1 + P2 + P3

kC2

 C2

Cj + FPi

KPiCj


 BPiCj

Lj + FPi

KPiLj


 BPiLj

Cj + FLi

KLiCj


 BLiCj

Lj + Lj + FLi

KLiLj


 BLiLj .
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In total there are 32 stoichiometric equations, and we have used an index notation for simplicity of nomenclature:

Pi for i = 1, 2, 3 represent the three pluripotency genes (PGs), with P1 = OCT4, P2 = SOX2 and P3 = NANOG.

Similarly, Li, for i = 1, 2, 3 represent the three lineage-specifying master genes (LSMGs) with L1 = RUNX2, L2 =

SOX9 and L3 = PPAR-γ. We assume that OCT4, SOX2 and NANOG proteins associate to form an OCT4 -SOX2

complex, represented by C1, and an OCT4 -SOX2 -NANOG complex, represented by C2. Free binding sites in the

promoters of the PGs are denoted FPi , while free binding sites in the promoters of the LSMGs are denoted FLi .

Bound sites in the promoters of the PGs are denoted BPiY , where Y ∈ {Cj , Lj} depending on whether the site

is bound by one of the pluripotency complexes or a LSMG respectively. Similarly, bound sites in the promoters

of the LSMGs are denoted BLiY . The parameters kC1 , kC2 and KXY (where X ∈ {Pi, Li} and Y ∈ {Cj , Lj})

are the equilibrium dissociation constants for the respective reactions. Here we have assumed that the LSMGs

bind co-operatively to each others promoters with binding site affinity 2. This assumption has been taken in

other computational models of transcription factor binding [26], and ensures that the resulting feedback loops are

nonlinear, yet also keeps the resulting mathematics transparent. In order to determine the effect of binding site

affinity on model solutions, we conducted extensive numerical simulations using a range of other binding affinities.

We found that the qualitative conclusions of the model are not significantly affected by variations in transcriptional

binding site affinity.

Assuming the reactions are in quasi-steady state gives the equations:

C1 = kC1P1P2

C2 = kC2P1P2P3

BPiCj
= KPiCj

FPi
Cj

BPiLj
= KPiLj

FPi
Lj

BLiCj
= KLiCj

FLi
Cj

BLiLj
= KLiLj

FLi
L2

j .

We can now determine TPi
the total number of binding sites in the promoter regions of each of the PGs:

Total Sites = Free Sites + Bound Sites (1)

TPi
= FPi

+
2∑

j=1

BPiCj
+

3∑
j=1

BPiLj
(2)

= FPi +
2∑

j=1

KPiCjFPiCj +
3∑

j=1

KPiLjFPiLj , (3)

= FPi

(
1 +

2∑
j=1

KPiCj
Cj +

3∑
j=1

KPiLj
Lj

)
, (4)
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and TLi
the total number of binding sites in the promoter regions of each of the LSMGs:

Total Sites = Free Sites + Bound Sites (5)

TLi = FLi +
2∑

j=1

BLiCj +
3∑

j=1

BLiLj (6)

= FLi
+

2∑
j=1

KLiCj
FLi

Cj +
3∑

j=1

KLiLj
FLi

L2
j , (7)

= FLi

(
1 +

2∑
j=1

KLiCj
Cj +

3∑
j=1

KLiLj
L2

j

)
. (8)

These equations may be rearranged to give the total number of free sites in the promoters of the PGs and LSMGs:

FPi
=

TPi

1 +
∑2

j=1KPiCjCj +
∑3

j=1KPiLjLj

, (9)

FLi
=

TLi

1 +
∑2

j=1KLiCjCj +
∑3

j=1KLiLjL
2
j

. (10)

The extended transcriptional network we have derived suggests that competition between signaling pathways ensures

that generically each master-gene regulates its own promoter in a biphasic manner: at low nuclear concentrations of

transcription factor gene expression is activated upon binding; while at high nuclear concentrations, gene expression

is repressed by transcriptional binding. This biphasic relationship between transcription factor concentration and

gene expression ensures that autoactivating feedback loops are tightly controlled, and has been experimentally

observed in mesenchymal systems. For example, the trans-acting factor protein AP2 regulates both cartilage-

derived retinoic acid-sensitive protein (CD-RAP) and insulin-like growth factor binding protein-5 Gene (IGFBP5 )

expression in a biphasic manner [27, 28], possibly by transcriptional self-interference in which AP2 protein molecules

interact with putative co-factors to interfere with AP2 regulation of gene expression [29].

In order to capture the essential features of biphasic regulation in a tractable manner, we assumed that the protein

product of each LSMG is inactivated by binding to putative co-factor(s), and that binding to co-factors is increased

at high concentrations possibly due to co-regulation of cofactor expression or post-transcriptional modification

of LSMG products. Letting [LiA] denote the nuclear concentration of the activating form of Li we make the

phenomenological hypothesis:

[LiA] ∝ [Li]m (11)

where m is a constant in the range 0 ≤ m ≤ 1. Note that this law ensures that [LiA]/[Li]→ 0 as [Li] saturates.

We assume that the rate of production of the protein product of each gene is proportional to the number of binding

sites in its promoter bound by an activator. Thus,

Rate of Production of Pi ∝ FPi

2∑
j=1

KPiCjCj (12)

Rate of Production of Li ∝ KLiLi
FLi

L2
iA = KLiLi

FLi
L2m

i (13)
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Here we have assumed that the OCT4 -SOX2 and OCT4 -SOX2 -NANOG complexes are always in an activating

form. Substituting Eqs. (9-10) into the above equations, and assuming that the protein products decay at con-

stant rates bPi and bLi we obtain the following set of nonlinear ordinary differential equations to describe the

concentrations of the various species

d[Pi]
dt

=
Ai

∑2
j=1KPiCj

[Cj ]

1 +
∑2

j=1KPiCj [Cj ] +
∑3

j=1KPiLj [Lj ]
− bPi

[Pi], (14)

d[Li]
dt

=
BiKLiLi

[Li]2m

1 +
∑2

j=1KLiCj
[Cj ] +

∑3
j=1KLiLj

[Lj ]2
− bLi

[Li]. (15)

Here Ai and Bi are constants of proportionality which incorporate TPi
and TLi

. Thus we have adopted Michaelis-

Menten type kinetics with generalized Hill coefficients [30].

In order to clarify analysis, we make the following biologically reasonable simplifying assumptions: (1) Binding of

the OCT4 -SOX2 and OCT4 -SOX2 -NANOG complexes to the promoters of the PGs and LSMGs occurs at the

same rate. Thus, we take KPiC1 = KPC1 , KPiC2 = KPC2 , KLiC1 = KLC1 , and KLiC2 = KLC2 for all i. (2) Binding

of the protein-products of all LSMGs to the promoters of the PGs occurs at the same rate for all PGs. Thus, we

take KPiLj = KPL for all i, j. (3) Binding of the protein product of all LSMGs to their own promoter occurs at

the same rate. Thus, we take KLiLi
= KL for all i. (4) Binding of the protein product of LSMG i to the promoter

of LSMG j 6= i occurs at a base rate independent of i and j (we shall consider how external stimuli affect this base

binding rate in more detail below). Thus, we take KLiLj = Ki
LL for all i, j 6= i. (5) The constants of proportionality

relating rate of production of the protein product to base rate of activator binding to the promoter is the same

for all PGs and the same for all LSMGs. Thus, we take Ai = A and BiKL = k̄2i for all i (we shall consider how

external stimuli affect these base binding rates in more detail below). (6) All protein products decay at the same

constant rate. Thus, we take bPi
and bLi

= β for all i.

Additionally, we nondimensionalise by taking the following scalings:

t =
1

K2m−1
L

t̂ [P1] =
1√
KPC1

ˆ[P1] [P2] =
1√
KPC1

ˆ[P2] [P3] =
KPC1

KPC2

ˆ[P3] [Li] =
1√
KL

ˆ[Li]

where hatted variables represent nondimensional quantities.

Thus, we get

d[Pi]
dt

=
k̄1i[P1][P2](1 + [P3])

1 + [P1][P2](1 + [P3]) + kPL

∑3
j=1[Lj ]

− b[Pi] (16)

d[Li]
dt

=
k̄2i[Li]2m

1 + kLC1 [P1][P2] + kLC2 [P1][P2][P3] + [Li]2 + k̄i
LL

∑3
j=16=i[Lj ]2

− b[Li] (17)

where kPL = KPL/
√
KL, kLC1 = KLC1/KPC1 , kLC2 = KLC2/KPC2 , k̄i

LL = Ki
LL/KL, b = β/K2m−1

L , k̄11 = k̄12 =

A
√
KPC1/K

2m−1
L and k̄13 = AKPC2/KPC1K

2m−1
L , and we have dropped hats for notational simplicity.

In order to examine cellular differentiation, we assume that the external environment contains specific elements
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which stimulate cellular differentiation. So, for example, murine ES cells are stimulated to osteogenesis by up-

regulation of RUNX2 by Retinoic Acid (RA) + BMP4; to chondrogenesis by upregulation of SOX9 by RA +

TGF-β; and to adipogenesis by upregulation of PPAR-γ by RA + Insulin [31]. Thus, we consider three specific

stimuli: s1 = [RA + BMP4], s2 = [RA + TGF-β] and s3 = [RA + Insulin]. Note that although these three stimuli

are lineage-specific, they all contain a common element (RA), thus they all partially stimulate all three lineages.

Similarly, since RA suppresses OCT4, SOX2 and NANOG expression [32], the three lineage-specific stimuli all also

suppress expression of the core PGs.

Thus, we assumed that the rate of binding of activators to PG promoters is inversely proportional to the external

concentration of nonspecific differentiation stimuli; while the rate of binding activators to LSMG promoters is

proportional to the external concentration of specific and nonspecific differentiation stimuli. Consequently, we

allowed k̄1i, k̄2i and k̄i
LL to depend upon external stimuli and assumed that all other model parameters were

constant. For the sake of simplicity, we assumed that stimulatory factors are not produced or degraded, but rather

are present in the extracellular environment at a known concentration, as would be the case during an in vitro

experiment. Specifically, we took

k̄1i =
k1i

1 + k0

∑
j sj

, (18)

k̄2i = k2(si + k3

∑
j 6=i

sj), (19)

k̄i
LL = kLL(si + k3

∑
j 6=i

sj). (20)

Here k0, k1i, k2, k3 and kLL are constants and si represents the combination of growth factors which stimulates

differentiation along the ith lineage. For simplicity we have assumed that stimulation of the ith lineage by the

jth stimulus occurs at the same rate for all i 6= j, and that the PGs are equally suppressed by all three stimuli.

Substituting Eqs. (18-20) into Eqs. (16-17) gives

d[Pi]
dt

=
k1i[P1][P2](1 + [P3])

(1 + k0

∑
j sj)(1 + [P1][P2](1 + [P3]) + kPL

∑
j [Lj ])

− b[Pi] (21)

d[Li]
dt

=
k2(si + k3

∑
j 6=i sj)[Li]2m

1 + kLC1 [P1][P2] + kLC2 [P1][P2][P3] + [Li]2 + kLL(si + k3

∑
j 6=i sj)

∑
j 6=i[Lj ]2

− b[Li] (22)

which are the equations given in the main text.

The model has the following 11 free parameters: k1i for i = 1, 2, 3 (k11 = k12) represent the relative base rates

of binding of the OCT4 -SOX2 and OCT4 -SOX2 -NANOG complexes to the PG promoters; k0 represents the

sensitivity the PGs to exogenous inhibition with RA; KPL represents the relative rate of binding of the LSMGs

to the promoters of the PGs; k2 represents the sensitivity the LSMGs to exogenous activation by lineage-specific

stimulus; k3 represents the relative sensitivity of the LSMGs to nonspecific stimulus; kLC1 represents the relative

rate of binding of the OCT4 -SOX2 complex to the promoters of the LSMGs; kLC2 represents the relative rate of

binding of the OCT4 -SOX2 -NANOG complex to the promoters of the LSMGs; KLL represents the relative rate
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of binding of LSMG i to the promoters of LSMG j 6= i; b represents the relative half-life of the protein products

of the LSMGs and PGs; and 0 < m ≤ 1 gives the relative degree of transcriptional self-interference for each of the

LSMGs and characterizes the biphasic form of the autoactivating feedback loops.

3 Mathematical Details

We include here a mathematical derivation of the existence and stability of steady-state solutions to a simplified

system which captures the essential secondary bifurcation behavior of Eqs. (21)-(22). In particular, we assume that

the pluripotency switch is off ([Pi] = 0 for all i) and consider the system:

dxi

dt
=

x2m
i

1 + x2
i + a

∑
j 6=i x

2
j

− bxi, (23)

where a is a generic differentiation stimulus. We shall consider the general case of N distinct lineages (i = 1 . . . N)

and we have simplified notation by denoting [Li] by xi. In general 0 ≤ m ≤ 1. We shall discuss solutions in the

limiting case m = 1 and indicate how this limiting case illuminates the more general solution structure.

The equations of interest are:

dxi

dt
=

x2
i

1 + x2
i + a

∑
j 6=i x

2
j

− bxi = fi, (24)

In general Eqs. (24) may possess steady-state solutions in which genes are transcribed at various unequal (but

constant) rates. Let αi be the steady-state expression level of gene i where αi is a solution to

α2
i − bαi

[
1 + α2

i + (1− a)α2
i + a

∑
j

α2
j

]
= 0.

Upon rearrangement this gives αi = 0 or

αi − b(1− a)α2
i = αj − b(1− a)α2

j (25)

for all i 6= j. Thus αi and αj satisfy the same quadratic equation. Therefore, the set of active genes can be

partitioned into at most 2 distinct blocks, with transcriptional levels α and β respectively, where from Eq. (25)

β =
1

b(1− a)
− α.

Thus generic steady-state solutions to Eqs. (24) have the form:

x∗ = (α, α, . . . , α︸ ︷︷ ︸
p times

;β, β, . . . , β︸ ︷︷ ︸
q times

; 0, 0, . . . , 0︸ ︷︷ ︸
r times

), (26)

where p+ q + r = N .
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The Jacobian JN (x∗) of the system at x∗ is the N ×N matrix with block-diagonal form:

JN (x∗) =

 Jpq 0

0 Jr

 (27)

where Jpq is the (p + q) × (p + q) Jacobian of the system projected onto X ∼= Rp+q, the subspace spanned by

{ei : i = 1, 2, . . . , p+ q}, and Jr is the r × r Jacobian of the system projected onto Y ∼= Rr, the subspace spanned

by {ei : i = p + q + 1, p + q + 2, . . . , N}, where {ei} is the standard basis of RN . The eigenvalues of JN (x∗) are

therefore the eigenvalues of Jpq along with those of Jr.

Since x = 0 for all x ∈ Y , the Jacobian Jr is diagonal: Jr = diag(F, F, . . . , F ) where

F =
∂fi

∂xi

∣∣∣∣
x=x∗

= −b. (28)

Thus, Jr has only one eigenvalue: −b (with multiplicity r). Since b > 0 the stability of the generic fixed point given

in Eq. (26) is determined solely by the eigenvalues of Jpq. Since X is flow invariant, this means that we need only

consider solutions of the form

x = (α, α, . . . , α︸ ︷︷ ︸
p times

;β, β, . . . , β︸ ︷︷ ︸
q times

) (29)

of the system projected onto X. Doing so reduces the dimension of the problem from N to N − r.

Observe that the system given by Eqs. (24) ‘looks the same’ if we permute the xis. That is, it remains unchanged

under the action of the symmetric group SN permuting the co-ordinates (the system given by Eqs. (24) is SN -

equivariant). The bifurcation behaviour of SN -equivariant systems has been considered in some depth [33, 34]. A

central result of these analyses is that solution branches in which species are expressed at unequal levels (as is the

case in Eq. (29)) bifurcating from homogeneous steady-state solutions (in which all species are active at the same

level) are generically unstable. This implies that SN -equivariant symmetry breaking bifurcations are generically

‘jump’ bifurcations. Our extensive numerical investigations suggest furthermore that steady-state solutions in which

genes are expressed at different non-zero levels are always unstable. Without loss of generality, stable steady-state

solutions to Eqs. (24) therefore generically have the form

x∗ = (α, α, . . . , α︸ ︷︷ ︸
p times

; 0, 0, . . . , 0︸ ︷︷ ︸
r times

) (30)

where p+ r = N .

Notice that the Jacobian at x∗ still has the diagonal form given in Eq. (27) with q ≡ 0. Thus the stability of all

remaining steady-state solutions in the N dimensional system can be determined by consideration of homogeneous

all-on solutions projected onto X for varying dimension p. In other words, once a gene has been switched off we

can (as far as stability calculations are concerned) consider it removed from the system, and examine the behavior

of the system in N − 1 dimensions.
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Consider now the general case in which p genes are expressed at the same level. Steady-state solutions then have

the form x∗ = (α, α . . . , α), where α is a solution to:

α− b
[
1 + α2 + a(p− 1)α2

]
= 0. (31)

Thus,

α =
1±

√
(1− 4b2[a(p− 1) + 1])
2b[a(p− 1) + 1]

. (32)

For p ≥ 2, both branches of Eq. (32) are non-negative and real when

a ≤ 1− 4b2

4b2(p− 1)
.

Since a > 0, we also require that b ≤ 1
2 for existence. For p = 1, we require only b ≤ 1

2 for existence.

We turn our attention now to the stability of the homogeneous steady-state solution x∗ which is (linearly) stable if

Re(λ) < 0 for all eigenvalues λ of the Jacobian Jp(x∗). Since matrix representation of elements of the symmetric

group Sp commute with the Jacobian of the system projected onto X, the steady-state x∗ = (α, α, . . . , α) has only

2 distinct eigenvalues: λ1 and λ2,

λ1 = F − (p− 1)G, (33)

λ2 = F −G, (34)

where λ2 has multiplicity p− 1, and

F =
∂fi

∂xi

∣∣∣∣
x=x∗

and G =
∂fi

∂xj

∣∣∣∣
x=x∗

.

Upon differentiating and simplifying using Eq. (31) we get:

λ1 = b(1− 2αb)− 2ab2α(p− 1), (35)

λ2 = b(1− 2αb) + 2ab2α. (36)

For a, b, α and p positive, λ1 < λ2 so x∗ is stable for λ2 < 0. Thus, both branches of solutions in Eq. (32) are

unstable for a ≥ 1.

For a < 1, x∗ is stable when

α >
1

2b(1− a)
. (37)

Substituting the lower branch of solutions from Eq. (32) into Eq. (37) and rearranging gives stability for the lower

branch when √
1− 4b2

[
a(p− 1) + 1

]
<
−ap
1− a

.

So the lower branch of solutions is unstable for all real positive a. Similarly, the upper branch of solutions is stable

for √
1− 4b2

[
a(p− 1) + 1

]
>

ap

1− a
,
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with bifurcation occurring at equality, when

a = ap = 1− 1
8b2
(
p+ 1±

√
(p+ 1)2 − 16b2p

)
.

The positive root of this equation is always negative. Since a is necessarily positive there is only one critical value

at which the upper branch of solutions loses stability:

ap = 1− 1
8b2
(
p+ 1−

√
(p+ 1)2 − 16b2p

)
. (38)

Solutions of the form given in Eq. (30) are therefore stable for 0 ≤ a < ap, and unstable for a ≥ ap.

Since the point ap at which a steady-state solution depends upon the number of active genes p, Eq. (38) means

that there is a series of bifurcation points {ai} in which different cellular configurations lose stability at different

values of the bifurcation parameter a. Furthermore, the series {ai} is monotonic decreasing in p: that is aN <

aN−1 < aN−2 . . .. So for a < ap all steady-state solutions of the form given in Eq. (30) with less than p genes

active are simultaneously stable. That is, the system exhibits multistability. However, as a is increased above ap

the solutions with p genes active lose stability, but all others with less than p genes active remain stable. Since the

sequence {ai} is monotonic decreasing in p, the system given by Eqs. (24) does not possess hysteresis.

Now consider transcriptional control of differentiation along the mesenchymal lineages by RUNX2, SOX9 and

PPAR-γ. In this case, there are three dimensions (N = 3) and the only stable nontrivial steady-state solutions are:

(α1, 0, 0), (0, α1, 0), (0, 0, α1); (α2, α2, 0), (α2, 0, α2), (0, α2, α2); (α3, α3, α3)

where α1, α2, α3 are determined by Eq. (32).

Notice that these solutions come in ‘groups’: 3 solutions have only one active gene (p = 1); 3 solutions have 2

active genes (p = 2), and one solution has all three genes active (p = 3). This grouping of equilibria results from

the symmetry of Eqs. (24). These ‘groups’ of equilibria are formally known as orbits. In this system, the orbit of

a fixed-point solution x∗p ∈ RN is the set

∆(x∗p) = {γx∗p : γ ∈ SN}. (39)

Thus, fixed-point solutions to Eqs. (24) come in SN -orbits. The symmetry structure of Eqs. (24) ensures that

all fixed-point solutions in the same orbit have the same stability. It is therefore convenient to consider orbits of

steady-state solutions rather than individual solutions per se. We say that the orbit ∆(x∗p) is stable when x∗p is

stable. In the three dimensional case, the system given by Eqs. (24) has 3 distinct orbits of steady-state solutions:

∆1 = {(α1, 0, 0), (0, α1, 0), (0, 0, α1)}, (40)

∆2 = {(α2, α2, 0), (α2, 0, α2), (0, α2, α2)}, (41)

∆3 = {(α3, α3, α3)}. (42)
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The first orbit represents the set of steady-state solutions in which one gene is active; the second orbit, the set of

steady-state solutions in which 2 genes are active; and the third orbit the steady-state solution in which all three

genes are active. Notice that these orbits order the steady-state solutions into a well-defined hierarchy: ∆i is the

set of solutions in which i genes are active.

Consider a cell in which all N master-genes are concurrently homogeneously expressed (that is, a steady-state

solution in ∆N ). This configuration is stable as long as 0 ≤ a < aN . However, as a is increased to aN , this

all-on configuration loses stability and the cell is forced to adopt an alternative genetic state. Extensive numerical

simulations suggest that this system does not admit any other more exotic solutions such as limit cycles, or

chaotic trajectories. Thus, the cell has to adopt an alternative steady-state genetic configuration. SN -equivariant

bifurcation theory suggests that heterogeneous configurations do not bifurcate continuously from this homogeneous

state, but rather that the system exhibits a ‘jump’ bifurcation, and transitions rapidly to a disparate configuration

[33, 34]. Since ai < ai−1 for all 3 ≤ i ≤ N , at the bifurcation point a = aN , all orbits with less than N genes

active are still stable. Thus, at bifurcation the system jumps to a configuration in an orbit with at most N − 1

genes active, and the cell is forced to move down a level in the orbit hierarchy. Heteroclinic connections between

steady-state solutions in different orbits may be thought of as lineage-restricting differentiation events. Numerical

simulations suggest that at the bifurcation point, the transition from one orbit to the next occurs rapidly and

heteroclinic connections to all lower orbits exist. However we find that generically for a cell in orbit ∆i a connection

from ∆i to ∆i−1 is established and the cell moves only one step down the orbit hierarchy (applying a perturbation

which respects an appropriate subgroup of SN can induce a connection from ∆i to ∆i−j for all 1 < j ≤ i − 1,

however we view this as a degenerate situation). Thus, generically, at a = aN the cell moves from a steady-state

in which N genes are active to a steady-state in which N − 1 genes are active and the last gene is switched off.

For a < aN−1 this state is stable, however as a is increased further to aN−1 this state too loses stability and the

cell again moves to a lower point in orbit hierarchy exactly as before. Since the sequence of bifurcation points is

monotonic decreasing, movement back up the orbit hierarchy (that is, bifurcation from ∆i to ∆j for j > i) is not

possible. Thus, deterministic bifurcation through the orbit hierarchy is rigid and one-way.

We may view the orbit hierarchy in phase-space as corresponding to a well-defined biological hierarchy as follows.

While cell types may be associated with attractors of genetic regulatory systems [35], stable orbits of steady-states

naturally associate with stages of differentiation. As an example, consider differentiation along the mesenchymal

lineages under the control of RUNX2, SOX9 and PPAR-γ. When ∆3 is stable it represents stable genetic configu-

rations in which all 3 transcription factors are active and bifurcation to orbits ∆2 or ∆1 is possible. Thus, this orbit

may be associated with a tripotent tissue-specific stem cell. Similarly, as a is increased bifurcation from ∆2 to ∆1 is

possible (but not back to ∆3) and stable steady-states in ∆2 represent progenitor cells with bipotent differentiation

potential. No bifurcation from ∆1 back up the hierarchy is possible as a is increased, and stable solutions in ∆1

therefore represent terminally differentiated cells in which only one master gene is active.

12



In the context of equivariant bifurcation theory, the process by which a system moves from a more to a less

symmetric state is known as spontaneous symmetry breaking [34]. Therefore, we interpret cellular differentiation

from stem- through progenitor- to differentiated cell-types to occur through a cascade of spontaneous symmetry-

breaking bifurcations.
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