Supplementary Text S2
Estimates of model parameters from the literature

Death rates and birth rates (b, , a)

Rodd et al. [1] studied the mortality rate of wild bumble bees in eastern Canada; based on their life table, foragers (roughly, ages 10-26 days) have an average natural death rate of 0.183 d-1.  We assumed that this value is a good estimate of disease-free mortality, b.  The bees studied by Rodd et al. were almost certainly free of C. bombi, which was nearly absent (< 2% of wild Bombus) in eastern Canada around the time of their study [2].  

Brown et al. [3] studied in the laboratory the mortality of bumble bees infected by C. bombi; they found that under food stress (nectar and pollen deprivation), infected bees had a 55.7% higher mortality rate than healthy bees.  Most natural bumble bee colonies probably experience frequent food shortages, as well as other stresses (e.g., weather, predators, and pesticides) that may interact with parasitic infections; thus, it seems likely that wild bees harbouring C. bombi would experience, at the minimum, a similarly elevated mortality rate.  This allows us to estimate disease-induced mortality, , as 0.183 x 0.557 = 0.102 d-1.

The intrinsic, disease-free, growth rate of bumble bee populations is not well known.  In our model, we assume that the net rate of increase, a - b, of the susceptible foraging population in the absence of C. bombi is positive, which reflects the rapid ‘growth phase’ that is typical of bumble colonies during the summer [4].  Given our value for b, we estimated a reasonable birth rate to be, a = 0.22 d-1; the resulting net rate of increase (0.22 – 0.183 = 0.037 d-1) produces wild bee densities in our simulations that are similar to those observed in nature [5].  We explore a range of values for the net rate of increase in our sensitivity analyses (Figure S1D).

Transmission rate at flowers (ν)

Few studies have attempted to measure rates of pathogen transmission in insects [reviewed by 6], and almost none consider transmission rates in bees [7,8].  However, Durrer and Schmid-Hempel [9] show that, in the laboratory, 20-40% of bumble bee workers become infected with C. bombi after foraging on flowers recently visited by an infected bee.  Using this result, and our own data, we can estimate the transmission coefficient of C. bombi as 
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, where µ is our estimate of pathogen decay (= 12.98 d-1, see Results), and ST / S0 is the fraction of initially susceptible bees that remained uninfected (36/51) after two hours of foraging (T = 0.083 d) in Durrer and Schmid-Hempel’s study.  We used our estimate of pathogen deposition by infected bees (352 C. bombi per minute of foraging, see Results) to approximate the number of C. bombi initially present at flowers, P0, in Durrer and Schmid-Hempel’s study (352 cells/min x 180 min foraging = 63360 cells).  The formula that we used to calculate ν was derived by D'Amico et al. [10] for estimating the transmission rates of an insect virus (nuclear polyhedrosis virus of the gypsy moth Lymantria dispar).  Our calculated value for ν (1.08 x 10-4 m2 d-1) is within the range of transmission rates observed across a variety of insect-pathogen systems [6].  The sensitivity of our model to variation in ν is shown in Figure S1C.  

The diffusion coefficient (D)

Adult winged insects can disperse a great distance from their initial location, e.g., D > 104 m2 d-1 [11] and, in the case of solitary insects, this process is similar to diffusion [12].  Bumble bees, however, do not disperse like solitary insects: they make repeated trips between their colony and rewarding patches of flowers; hence, estimating a diffusion coefficient D is less straightforward than for solitary species.  Nevertheless, it might be reasonable to assume that bees initially forage close to their nest and gradually expand their foraging range as they increasingly explore and acquire more information about their local habitat.  In this case, we can assume that the distribution of individuals relative to their colony is approximated by a normal curve and estimate D as MSD/4t, where MSD is the (expected) mean squared displacement of bees at time t [11].  Most studies suggests that workers typically forage within ~500 m of their nest [13,14,15,16] and only occasionally venture beyond 1.5 km [17].  Assuming that an average worker disperses only as far as 1.5 km during its life [t = 25 days, from 1], yields D = 8.0 x 103 m2 d-1.  It is not known if infection alters a bee’s foraging distance; therefore, we assume the same value of D for healthy and infected workers.  Infective C. bombi cells require bumble bees as vectors to move through the environment; thus we also use the same value of D for the dispersal of pathogen cells.  We examine the predictions of our model across a wide range of values for D (Figure S1E).
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