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1. The selection equation 

1.1 Random mating with direct selection 
For either a single or multiple locus system with N female genotypes and M male genotypes, let xi 
and yj (i= 1,...,N, j= 1,...,M) be respectively the female and male genotype proportions in the 
population. We assume that the phenotypic expression of the GFMH affects the fitness of carriers, 
viewed either as mating success (i.e., the probability of entering the mating pool) or as fecundity 
(the contribution to the total number of offspring) – which are equivalent under the hypothesis of 
random mating (see below formula (4)). Denote by fi the fitness of a female with genotype i, by mj 
the fitness of a male with genotype j, and by  
 
  ψi = fi/fN,          µj = mj/mM ,        (1) 
 
the corresponding normalized fitness (referred to as normalized fecundity in the main text). Assume 
first that fitness is interpreted as mating success, i.e., that it is proportional to the probability of 
entering the mating pool, and mating is random among the individuals in the pool. Then, for non-
overlapping discrete generations and infinite population size, the genotype frequencies x'i and y'j at 
the next generation are given by the iterative relations (see [34]): 
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where Aihk and Bjhk are the conditional probabilities that a daughter/son of parents with genotypes h 
and k has genotype i or j, i.e.: 
 
  Aihk = Pr(d=i | m=h, f=k),                   Bjhk = Pr(s=j | m=h, f=k) 
 
(m = mother, f = father, d = daughter, s = son), and  
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for the proportions of female and male genotypes in the population before selection occurs, i.e. 
before entering the mating pool, we may rewrite the selection equation (2)  in terms of ξi and ηj : 
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with N  and M  suitable normalizing factors. The iterative formula (4) has the form of a fertility 
equation [35], and corresponds to random mating with multiplicative fertilities ψhµk for the mating 
between genotypes h and k. Hence, in view of (4), the fitness of each genotype may be also 
interpreted as its fecundity, i.e. the contribution of that genotype to the total number of offspring . 
 
The coefficients Aihk and Bjhk can be characterized in terms of the gamete-genotype correlation 
matrices as follows. Since for mixed or X-linked loci fathers may produce two types of gametes, 
according to the presence or the absence of the X chromosome, we label gametes with the X 
chromosome (female gametes) by the index α = 1,...,n, and gametes containing the Y chromosome 
(male gametes) by  the index β = 1,...,m. Define 
 
   Cαh = Pr(female gamete = α | maternal genotype = h), 
  Dαk = Pr(female gamete = α | paternal genotype = k), 
  Eβk = Pr(male gamete = β | paternal genotype = k), 
 
 the matrices that give the correlation between gametes and parental genotypes, and let   
 
  Fiαα' = Pr(daughter genotype = i | maternal gamete = α, paternal gamete = α'), 
  Gjαβ = Pr(son genotype = j | maternal gamete = α, paternal gamete = β), 
  
be the matrices correlating offspring genotypes and parental gametes. Then  
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As is well known, the iterative system (2) yields a corresponding evolution equation for the gamete 
proportions 
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which we do not use here. The explicit form of the gamete-genotype correlation matrices for each 
model is given in Section 7. 

1.2 Maternal effects 
A simple way of accounting for maternal effects is by assuming that the maternal genotype affects 
sons’ fitness regardless of their genotype [28]. Denoting by ρh, with h=1,...,N,  the male fitness 
reduction due to maternal effects, the evolution equations for the genotype proportions are now 
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with obvious definitions of the normalizing factors N̂ and M̂ .  

1.3 Genomic imprinting 
In this case, the assumption is that a particular allele is active in a male only when inherited by the 
mother. To account for this mechanism, we enlarge the set of male genotypes, distinguishing two 
male genotypes according to the provenience of the gametes. For instance, in the case of a single 
autosomal locus, the male genotype Aa would split into the genotypes Amap and  amAp. With this 
modification, the selection equation in the form (4) may still be used. 
 

2. Description of the models 
 
A model based on the selection equation (2) is completely characterized by the correlation matrices 
Cαh, Dαk, Eβk, Fiαα', Gjαβ, listed in Section 7 (which for multi-locus models depend on the 
recombination fraction r), and the values of the normalized fecundities ψi, µj, and ρi.   
 
Specifically, we assume that the effect of the GFMH is to lower the average fecundity of male 
carriers, normalized with respect to non-GFMH-carrying males, to a value γ < 1 (except for the 
overdominance cases in which heterozygous GFMH-carrying males have average fecundity γ' > 1). 
In contrast, the GFMH is assumed to increase the average fecundity of female carriers to a value 
fGFMH greater than the baseline fecundity fb of female non-carriers. This is equivalent to setting the 
normalized fecundity α of GFMH-carrying females at a value α > 1 (see formula (6) below). To 
allow for incomplete dominance, we assign to the fecundity of selected female heterozygotes an 
intermediate value between fGFMH and fb. The results of all models below will be discussed in terms 
of their dependence on the two main input parameters 
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=α     and   γ , (6) 

 
We remark that the assumption that male GFMH-carriers have a given average fecundity γ < 1 is 
compatible with an array of individual behaviours that may be related to homosexuality, 
bisexuality, or even heterosexuality: the individual fecundity of GFMH-carrying males may thus 
take any positive value, under the constraint that the normalized average fecundity of male carriers 
be γ < 1. (When the distribution of individual normalized fecundities in the set of GFMH-carrying 
males clusters around the values 0 and 1, the value 1 − γ can be interpreted as penetrance.) 
 
The labelling of the models below is the same used in the main text. All one-locus models are 
diallelic with alleles A and a, with A the ‘trait-promoting allele’. Two-locus models are also diallelic 
(A,a,B,b), and we have focused on situations in which the allele A acts as an ‘activator allele’ whose 
presence is necessary to the expression of another ‘trait-promoting allele’ allele B, under the 
dominance assumptions discussed in the main text. 
 
Remark on notation. When there is no ambiguity, for brevity hereafter we use, in lists of two-
locus genotypes, an abbreviated notation in which the first two symbols in a string refer to the first 
locus and the second two symbols refer to the second locus, i.e. Ab/ab is denoted Aabb. We will 
also write GFMH+ and GFMH– to indicate GFMH-carriers and non-GFMH-carriers, respectively. 
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2.1 A single autosomal locus – models (1a), (1b), ( 1c), (3a) 
In models (1a), (1b) and (1c), we have N=M=3, n=m=2, and i,j,h,k=1,2,3, label male and female 
genotypes (1=AA, 2=Aa, 3=aa), while α,β = 1,2, label male and female gametes (1=A, 2=a). 
Specifically, we have considered the following cases: 
 
– Model (1b): one autosomal locus with overdominance in males and complete dominance in 
females (which results in directional selection in females) 
 
  ψ1 = ψ2 = α > 1 ,    ψ3 = 1,           µ1 =γ < 1,    µ2 = γ' = 1.2,    µ3 = 1.   
 
– Model (1c): one autosomal locus with sexually antagonistic selection for a recessive allele A in 
males 
 
  ψ1 = ψ2 = α > 1,    ψ3 = 1,                µ1 =γ < 1,    µ2 = 1,    µ3 = 1.   
 
– Model (3a): one autosomal locus with maternal effects on males and directional selection in 
females, see equation (5), again assuming complete dominance in females 
 
  ψ1 = ψ2 = α > 1 ,    ψ3 = 1,                ρ1 =γ <  1,    ρ2 = 1,    ρ3 = 1.   
 

2.2 A single X-linked locus – models (2a), (2b), (3 b) 
Here N=3, M=2, n=2, m=1. Now i,j= 1,2,3, label female genotypes (1=AA, 2=Aa, 3=aa), while 
h,k=1,2 for male genotypes (1=A-, 2=a-). Also, α=1,2, label female gametes (1=A, 2=a), and β=1 
labels the male gamete (1=-). Among models (2a), (2b), (3b), we have studied only the two relevant 
cases: 
 
– Model (2b): one X-linked locus with sexually antagonistic selection for a dominant allele in 
females 
 
  ψ1 = ψ2 = α > 1 ,    ψ3 = 1,                µ1 =γ < 1,    µ2 = 1.   
 
– Model (3b): one X-linked locus with maternal effects on males and directional selection in 
females, see equation (5), with complete dominance in females 
 
  ψ1 = ψ2 =  α > 1,    ψ3 = 1,                ρ1 =γ < 1,    ρ2 = 1,    ρ3 = 1.   

2.3 One autosomal locus (alleles B,b) and one X-linked locus (alleles A,a) – 
models (4a), (5a) 
Here N=9, M=6, n=4, m=2. Now i,j= 1,…,9, label female genotypes (1=AABB, 2=AaBB, 3=aaBB, 
4=AABb, 5=AaBb, 6=aaBb, 7=AAbb, 8=Aabb, 9=aabb), while h,k=1,…,6, for male genotypes 
(1=A-BB, 2=a-BB, 3=A-Bb, 4=a-Bb, 5=A-bb, 6=a-bb). Also, α=1,…,4, label female gametes 
(1=AB, 2=aB, 3=Ab, 4=ab), and β=1,2 label the male gametes (1=B-, 2=b-).  
 
Assuming the general case of incomplete dominance for the allele B in females, we write 
    
 ψ1 = ψ2 = α > 1 ,              ψ 4 =ψ5 = 1+ u(α−1),       ψ3 = ψ6 =  ψ7 = ψ8 = ψ9 = 1, 
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where hereafter the parameter u, with 0 ≤ u ≤ 1, is a parameter tuning the incomplete dominance of 
B (B is dominant for u = 1, B is recessive for u = 0). As to males, we assume in model (4a) that B is 
recessive, and selection is sexually antagonistic, i.e.,  
 
                               µ1 =  γ < 1,                µ2 ,…, µ6 = 1,   
 
while  in model (5a) we assume overdominance for the allele B 
 
                               µ1 =γ < 1,               µ3 = γ'  = 1.2,             µ2 =µ4 =µ5 =µ6 = 1, 
 
where the value of γ' > 1 is chosen sufficiently close to 1 since the heterozygote advantage, if 
present, is not expected to be large. 

2.4 Two X-linked loci – model (4b) 
Here N=10, M=4, n=4, m=1, since due to linkage we must distinguish between the genotypes  
AB/ab and Ab/aB. The female genotypes i,h=1,…,9, are: 1=AABB, 2=AaBB, 3=aaBB,  4=AABb, 
5=AaBb, 6=AabB, 7=aaBb, 8=AAbb, 9=Aabb, 10=aabb, while the male genotypes labes are: 
h,k=1,…,4, with 1=A-B-, 2=a-B-, 3=A-b-, 4=a-b-. Also, α = 1,…,4 and the female gametes are 
1=AB, 2=aB, 3=Ab, 4=ab; there is only one male gamete (- -)  with β=1. As before, we view the 
first X-linked allele A as an activator of the GFMH associated to the allele B on the second X-linked 
locus. We assume incomplete dominance for the allele B in females, i.e.,   
 
 ψ1 = ψ2 =  α > 1,        ψ4 =ψ5 =ψ6 = 1+ u(α−1),       ψ3 = ψ7 =  ψ8 = ψ9 = ψ10 = 1, 
 
and in males selection is antagonistic to females 
 
                                   µ1 =  γ < 1,                µ2 = µ3 = µ4 = 1.    

2.5 Two autosomal loci – models  (4c), (5b) and (7)  
Here N=M=10 (since we must distinguish between the genotypes  AB/ab and Ab/aB) and n=m=4, 
with i,j,h,k=1,…,10, for genotypes (1=AABB, 2=AaBB, 3=aaBB, 4=AABb, 5=AaBb, 6=AabB, 
7=aaBb, 8=AAbb, 9=Aabb, 10=aabb) and α = 1,…,4, label gametes (1=AB, 2=aB, 3=Ab, 4=ab).  
As before, we view the first autosomal allele A as an activator of the GFMH associated to the 
second autosomal allele B.  
 
– In model (4c) we assume antagonistic selection for males and females, and incomplete dominance 
of B in females: 
 
 ψ1 = ψ2 = α > 1,        ψ4 =ψ5 =ψ6 = 1+ u(α−1),       ψ3 = ψ7 =  ψ8 = ψ9 = ψ10 = 1, 
 
while in males we assume B to be recessive, with 
 
                         µ1 = µ2 =  γ < 1,                µ3 = ... = µ10 = 1.   
 
– In model (5b) we still assume incomplete dominance of B in females, but overdominance for B in 
males, 
 
 µ1 = µ2 =  γ < 1,            µ4 =µ5 =µ6 = γ' = 1.2,           µ3 =µ7 =µ8 =µ9 =µ10 = 1.   
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–  In model (7) for maternal effects, see formula (5), we again assume incomplete dominance for B 
in females, so that: 
 
            ρ1 = ρ2 = γ < 1,           ρ4 =ρ5 =ρ6 = 1 –  u(1– γ),           ρ3 =ρ7 =ρ8 =ρ9 =ρ10 = 1.   

2.6 Two independent autosomal loci with genomic imp rinting – model (6) 
The natural choice for the allele subject to imprinting is A, which is assumed to be active only when 
inherited from the mother. In this case we have N=9 and M=10. In fact, by independence, we do 
not distinguish anymore between the genotypes AB/ab and Ab/aB, but split the male genotype 
AB/aB in two classes: AB(maternal)/aB(paternal) and aB(maternal)/AB(paternal). Notice that we do 
not distinguish, for instance, between AB(maternal)/ab(paternal) and aB(maternal)/Ab(paternal), 
since we assume that B is recessive in males, so that the latter two genotypes give the same 
phenotype. Also, n=m=4. In this case i,j= 1,…,9, label female genotypes (1=AABB, 2=AaBB, 
3=aaBB, 4=AABb, 5=AaBb, 6=aaBb, 7=AAbb, 8=Aabb, 9=aabb), while h,k=1,…,10, for male 
genotypes (1=AABB, 2=A(m)a(p)BB, 3=a(m)A(p)BB, 4=aaBB, 5=AABb, 6=AaBb, 7=aaBb, 
8=AAbb, 9=Aabb, 10=aabb). Finally, α=1,…,4, label female and male gametes (1=AB, 2=aB, 
3=Ab, 4=ab). Assuming incomplete dominance for the allele B in females, we write 
    
  ψ1 = ψ2 = α > 1,        ψ4 =ψ5 = 1+ u(α−1),       ψ3 = ψ6 =  ψ7 = ψ8 = ψ9 = 1. 
 
As to males, we assume that GFMH-related allele B is recessive, and selection is sexually 
antagonistic:  
 
                        µ1 =   µ2 =  γ < 1,                µ3 = … = µ10 = 1. 

3. Correlation matrices for the pedigree analysis 
 
Bayes' theorem yields the conditional probabilities of parental genotypes given the offspring 
genotype, described by the matrices (m= mother, f = father, d = daughter, s= son) 
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where Pr(d=i) (Pr(s=j)) is the probability that a daughter (son) has genotype i [j], and is just the 
frequency ξi [ηj] of genotype i before selection. At equilibrium xi =x'i and yj =y'j, and we obtain 
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Analogously, we compute the conditional probabilities relating brothers' and sisters' genotypes (ss = 
sister, b = brother) at equilibrium: 
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obtaining 
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which yield the conditional probabilities of maternal and paternal aunts' genotypes (ma = maternal 
aunts, pa = paternal aunts):                 
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A similar argument allows one to compute the correlation matrices between grandparents' and 
nephews' genotypes, or between maternal and paternal cousins and a given individual's genotype. 
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4. Outputs  
 
In order to study the stability properties and pedigree asymmetries, we introduce the following four 
classes of indicators (outputs of each model), all viewed as functions of the normalized fecundities 
α and γ. Recall GFMH+ and GFMH– indicate GFMH-carriers and non-GFMH-carriers 
respectively, and denote by F and H the sets of genotypes for which ψi = α for i ∈ F, and µj = γ for 
j ∈ H (these are the sets of GFMH-genotypes for females and for males, respectively).   
 
(i) The equilibrium proportions η and φ respectively of GFMH+ males and GFMH+ females in the 
population, defined by 
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where ηj and ξi are the equilibrium proportions of male and female genotypes j and i before 
selection (cf. (3)), for given α and γ. For the models based on maternal effects (see equation (5)), 
only the equilibrium proportion φ of GFMH+ females is relevant. 
     
(ii ) Proportion of GFMH+ males in the parental lines (the first two are not defined for η = 0, the 
second two when 1− η = 0):   
 
–  average proportion of GFMH+ maternal uncles and cousins of GFMH+  males 
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–  average proportion of GFMH+ paternal uncles, paternal cousins, and fathers of GFMH+ males  
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–  average proportion of GFMH+ maternal uncles and cousins of GFMH– males 
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–  average proportion of GFMH+ paternal uncles, paternal cousins, and fathers of GFMH– males  
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(iii ) Maternal fecundities: the normalized fecundity of the mother of a son with genotype j is 
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so that the average fecundities of mothers of GFMH+ and GFMH– males are respectively: 
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(iv) Aunts' fecundities: since the expected fecundity of the aunt (maternal or paternal) of a nephew  
with genotype j is 
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we obtain: 
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∈∈ =

=∈
Hq

qj
Hj

N

k
kjkma UH ηηψψ /) s|(

1

E ; 

   

–  the fecundity of paternal aunts of GFMH+  males:  ∑∑ ∑
∈ = ∈

=∈
Hj

N

k Hq
qjkjkpa VH

1

/) s|( ηηψψE ; 

   

–  the fecundity of maternal aunts of GFMH–  males:  ∑∑ ∑
∉ = ∉

=∉
Hj

N

k Hq
qjkjkma UH

1

/) s|( ηηψψE ; 

 

–  the fecundity of paternal aunts of GFMH–  males:   ∑∑ ∑
∉ = ∉

=∉
Hj

N

k Hq
qjkjkpa VH

1

/) s|( ηηψψE . 

 
In the Figures below, and in the main text, we also consider suitable ratios for the indicators (ii )-(iv), in 
order to better put in evidence the pedigree asymmetries in sexual orientation and fecundity. 
 
A final important output of the models is the total fecundity increment of the population due to the 
GFMH, given by the difference between the fecundity of the actual population at equilibrium and 
the fecundity of a population with same baseline fecundity (which coincides with fb defined earlier) 
but no GFMH+ genotypes: 
 

            b

N

h

M

k
khkh fmff −=∆ ∑∑

= =1 1

ηξ . 

 
This may also be written as 
 

  ( )[ ] ( )[ ]{ }11111 −+−+−=∆ ηγφα
α

GFMHf
f . 

 
If, for instance due to social or economic factors, the female fecundities fb and fGFMH decrease, there 
is a decrease of the total fecundity in the population. However, by (6), the normalized fecundity α 
of GFMH+ females is inversely proportional to the baseline fecundity fb of GFMH– females, and if, 
as expected, fGFMH decreases less than fb, this produces an increase of α. As discussed in the main 
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text, ∆f turns out to be an increasing function of α for the most relevant models, so that in 
conditions of falling female fecundities, the ∆f due to the GFMH always opposes the fecundity 
reduction.  
 

5. Results 

Here we show the typical outputs of the models considered above, obtained by iterating numerically 
the dynamic equations in Section 1. 

5.1 One autosomal locus with overdominance in males  and direct selection in 
females – model (1b)  
In this case overdominance guarantees the persistence of the GFMH for all values of the normalized 
fecundities in the range 1 < α < 2 and 0 < γ < 1 (Figure 1A). However, the pedigree asymmetries 
are not sufficiently accounted for by this model. The graphs in Figure 1 show that, while there is a 
small increase of GFMH+ relatives in the parental lines of GFMH+ (red plots in Figures 1B-1D) 
with respect to parental lines of GFMH– (blue plots in Figures 1B-1D), there is virtually no 
difference in this respect between the maternal and paternal lines of both GFMH+ and GFMH– 
(dashed red and blue plots in Figures 1C-1E). 
 
 

 

  

 
        A                                                 B                                               C   
 
  

 
  D                                                 E    
 
Figure 1. Plots for model (1b): one autosomal locus with overdominance in males. The blue plots in 
A correspond to values of α between 1 and 2, while α = 1.4 in B, C, D, E. 

5.2 One autosomal locus with antagonistic selection  – model (1c) 
Also in this case the GFMH remains stable for all values of the normalized fecundities in the range 
1 < α < 2 and 0 < γ < 1 (Figure 2A). Again, the pedigree asymmetries are not sufficiently accounted 
for by this model. However, the same conclusions of  model (1b) hold here: there is a small increase 
of GFMH+ relatives in the parental lines of GFMH+ (Figures 2B-2D) but there is virtually no 
difference in this respect between the maternal and paternal lines of both GFMH+ and GFMH– 
(Figures 2C-2E). 
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        A                                                 B                                               C   
 
  

 
  D                                                 E    
 
Figure 2. Plots for model (1c): one autosomal locus with sexually antagonistic selection. The blue 
plots in A correspond to values of α between 1 and 2, while α = 1.4 in B, C, D, E. 

5.3 One X-locus with antagonistic selection – model  (2b) 
This model is unstable in the range 1 < α < 2 and 0 < γ < 1 (Figure 3A). The pedigree asymmetries, 
however, are well explained: the graphs in Figures 3B-3E show that there is a substantial increase 
of GFMH+ relatives in the maternal lines of GFMH+ (dashed red plots in Figures 3B-3D, and red 
plots in Figures 3C-3E), and  there is virtually no difference between all other groups. 
 
 

  

  

 
  A                                                 B                                               C   
 
  

 
  D                                                 E    
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Figure 3. Plots for model (2b): one X-linked locus with sexually antagonistic selection. The blue 
plots in A correspond to values of α between 1 and 2, while α = 1.2 in B, C, D, E. 

5.4 One autosomal or X-linked locus with maternal s election – models (3a,b) 
Both models  are highly unstable in the range 1 < α < 2 and 0 < γ < 1 (Figures 4A-4B). 
 
 

          

 

 
  A                                                        B                                          
 
Figure 4. Plots for model (3a,b): an autosomal (A) and an X-linked locus (B) with maternal 
selection. The blue plots in A correspond to values of α between 1 and 2. 

5.5 An X-linked locus and an autosomal locus with a ntagonistic selection – 
model (4a) 
This model is stable in the range 1 < α < 2 and 0 < γ < 1 (Figure 5A). The pedigree asymmetries are 
well explained: the graphs in Figure 5B-5E) show that there is a substantial increase of GFMH+ 
relatives in the maternal lines of GFMH+ (dashed red plots in Figures 5B-5D, and red plots in 
Figures 5C-5E), and  there is virtually no difference between all other groups. 
 
 

  

  

 
  A                                                 B                                               C   
 
  

 
  D                                                 E    
 
Figure 5. Plots for model (4a): one autosomal and one X-linked locus with sexually antagonistic 
selection. The blue plots in A correspond to values of α between 1 and 2, while α = 1.5 and u = 0.1 
in B, C, D, E. 
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5.6 Two X-linked loci with antagonistic selection –  model (4b) 
Again, this model is stable in the range 1 < α < 2 and 0 < γ < 1 (Figure 6A), and the pedigree 
asymmetries are well explained: the graphs in Figures 6B-6E show that there is a large increase of 
GFMH+ relatives in the maternal lines of GFMH+ (dashed red plots in Figures 6B-6D, and red 
plots in Figure 6C-6E), and  there is no difference between all other groups. 
 
   

 
  A                                                 B                                               C   
 
  

 
  D                                                 E    
 
Figure 6. Plots for model (4b): two X-linked loci with sexually antagonistic selection. The blue 
plots in A correspond to values of α between 1 and 2, while α  = 1.4, r = 0.25, and u = 1 in B, C, D, 
E. 

5.7 Two autosomal loci with antagonistic selection – model (4c) 
There is no significant difference between this 2-locus model and its one-locus counterpart model 
(2c): the GFMH remains stable for all values of the normalized fecundities but pedigree 
asymmetries are not explained. 
 

   

     
  A                                                 B                                               C   
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Figure 7. Plots for model (4c): two autosomal loci with sexually antagonistic selection. The blue 
plots in A correspond to values of α between 1 and 2, while α  = 1.4, r = 0.25, and u = 1, in B, C, 
D, E. 

5.8 An X-linked locus and an autosomal locus, with overdominance in males –  
model (5a) 
A typical overdominance scenario as in model (1b). The GFMH is persistent for all values of the 
normalized fecundities in the range 1 < α < 2 and 0 < γ < 1. Again, the pedigree asymmetries are 
not sufficiently accounted for by this model: there is a small increase of GFMH+ relatives in the 
parental lines of GFMH+ with respect to parental lines of GFMH- but  there is virtually no 
difference between the maternal and paternal lines of both GFMH+ and GFMH–. 
 
 
 

  

  

  
  A                                                 B                                               C   
 
  

 
  D                                                 E    
 
Figure 8. Plots for model (5a): one autosomal and one X-linked locus with overdominance in males. 
The blue plots in A correspond to values of α between 1 and 2, while α = 1.5 and u = 0 in B, C, D, 
E. 

5.9 Two autosomal loci with overdominance in males – model (5b) 
Again a typical overdominance scenario as in models (1b) and (5a).  
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Figure 9. Plots for model (5b): two autosomal loci with overdominance in males. The blue plots in 
A correspond to values of α between 1 and 2, while α  = 1.4, r = 0.25, and u = 1  in B, C, D, E. 

5.10 Two independent autosomal loci with genomic im printing – model (6) 
While this model is rather stable, it does not account well for pedigree asymmetries. Namely, while 
there is a small increase of GFMH+ relatives in the parental lines of GFMH+ (red plots in Figures 
1B-1D) with respect to parental lines of GFMH- (blue plots in Figures 1B-1D), there is virtually no 
difference in this respect between the maternal and paternal lines of both GFMH+ and GFMH– 
(dashed red and blue plots in Figures 1C-1E). 
 
 
 

  

  

 
  A                                                 B                                               C   
 
  

 
  D                                                 E    
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Figure 10. Plots for model (6): two autosomal loci with genomic imprinting. The blue plots in A 
correspond to values of α between 1 and 2, while α  = 1.4, r = 0.25, and u = 0.2 in B, C, D, E. 

5.11 Two autosomal loci with maternal selection – m odel (7) 
As for models (3a) and (3b), this model is highly unstable. 
 

  

 

   
 
Figure 11. Plot for model (7): two autosomal loci with maternal selection. The blue plots in A 
correspond to values of α between 1 and 2, and α  = 1.4, r = 0.25, u = 0.5. 
 

6. Remarks on phenotypic expression 
 
As mentioned in the main text, the one- and two-locus models considered above for GFMH 
propagation fall into three groups, based respectively on the three different mechanisms of 
overdominance in males, maternal effects, and sexual antagonism. It is possible to relate each 
hypothesis to an interpretation in terms of the phenotypic expression of the GFMH. 
 
(i) The hypothesis of expression of ‘maternal GFMH’, leads, on the one hand, to model (6) based on 
maternal genomic imprinting, and on the other hand, following the approach of Ref. [28], to models 
(3a), (3b), (7) based on genetic maternal effects on males.   
 
(ii ) The models based on overdominance in males (see (1b), (5a), (5b)) may be related to the 
hypothesis of expression of ‘feminizing GFMH’, as discussed for instance in [28]. In this case the 
GFMH induce feminization, increasing the probability of homosexuality in males, by directing the 
development towards the female sex determination. As indicated in [28], a plausible scenario for 
such feminizing GFMH would be overdominance in males, because such GFMH may give higher 
fitness to heterozygous males (who may for instance have higher success in attracting females). 
Feminizing GFMH, however, are always favorable to females, and would induce positive 
directional selection in females.   
 
We notice the overdominance mechanism considered in (1b), (5a), (5b), does not coincide with the 
classical hypothesis in which overdominance is manifested in all carriers regardless of sex. Indeed, 
the feminizing GFMH, being always favorable to females, always introduces in the overdominance 
models considered here a sexually antagonistic component.    
 
(iii ) The models based on sexually antagonist selection (see (1c), (2b), (4a), (4b), (4c)), are naturally 
related to the hypothesis of expression of ‘androphilic GFMH’. By this we mean that the GFMH 
induce, rather than an overall feminization, a more focused attraction to males as a target of the 
mating behaviour. In this case the plausible scenario is negative directional selection in males with 
no heterozygote advantage. Androphilic GFMH however, are always favorable to females, and 
induce positive directional selection in females. 
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As a consequence of the above discussion, the conclusion (see the main text) that the GFMH have 
sexually antagonistic character, suggests an androphilic expression of the GFMH. We notice that 
this allows one, in principle, to make testable predictions regarding the behavior of both male and 
female GFMH carriers. 
 

7. List of the gamete-genotype correlation matrices 
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7.2 A single X-linked locus  
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7.3 Two loci: autosomal and X-linked  
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and finally 
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7.4 Two X-linked loci 
Cαh and Fiαα'  are as in 7.5, and 
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7.5 Two autosomal loci  
By setting r  the recombination fraction, λ = (1–2r) is the linkage coefficient. 
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7.6 Two independent autosomal loci with genomic imp rinting 
Cαk and Fiαα'  are as in  7.3, and 
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